Abstract:Real-world video super-resolution (VSR) presents significant challenges due to complex and unpredictable degradations. Although some recent methods utilize image diffusion models for VSR and have shown improved detail generation capabilities, they still struggle to produce temporally consistent frames. We attempt to use Stable Video Diffusion (SVD) combined with ControlNet to address this issue. However, due to the intrinsic image-animation characteristics of SVD, it is challenging to generate fine details using only low-quality videos. To tackle this problem, we propose DAM-VSR, an appearance and motion disentanglement framework for VSR. This framework disentangles VSR into appearance enhancement and motion control problems. Specifically, appearance enhancement is achieved through reference image super-resolution, while motion control is achieved through video ControlNet. This disentanglement fully leverages the generative prior of video diffusion models and the detail generation capabilities of image super-resolution models. Furthermore, equipped with the proposed motion-aligned bidirectional sampling strategy, DAM-VSR can conduct VSR on longer input videos. DAM-VSR achieves state-of-the-art performance on real-world data and AIGC data, demonstrating its powerful detail generation capabilities.
Abstract:3D Gaussian Splatting (3DGS) has emerged as a powerful technique for radiance field rendering, but it typically requires millions of redundant Gaussian primitives, overwhelming memory and rendering budgets. Existing compaction approaches address this by pruning Gaussians based on heuristic importance scores, without global fidelity guarantee. To bridge this gap, we propose a novel optimal transport perspective that casts 3DGS compaction as global Gaussian mixture reduction. Specifically, we first minimize the composite transport divergence over a KD-tree partition to produce a compact geometric representation, and then decouple appearance from geometry by fine-tuning color and opacity attributes with far fewer Gaussian primitives. Experiments on benchmark datasets show that our method (i) yields negligible loss in rendering quality (PSNR, SSIM, LPIPS) compared to vanilla 3DGS with only 10% Gaussians; and (ii) consistently outperforms state-of-the-art 3DGS compaction techniques. Notably, our method is applicable to any stage of vanilla or accelerated 3DGS pipelines, providing an efficient and agnostic pathway to lightweight neural rendering.
Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Abstract:A fundamental challenge in car-following modeling lies in accurately representing the multi-scale complexity of driving behaviors, particularly the intra-driver heterogeneity where a single driver's actions fluctuate dynamically under varying conditions. While existing models, both conventional and data-driven, address behavioral heterogeneity to some extent, they often emphasize inter-driver heterogeneity or rely on simplified assumptions, limiting their ability to capture the dynamic heterogeneity of a single driver under different driving conditions. To address this gap, we propose a novel data-driven car-following framework that systematically embeds discrete driving regimes (e.g., steady-state following, acceleration, cruising) into vehicular motion predictions. Leveraging high-resolution traffic trajectory datasets, the proposed hybrid deep learning architecture combines Gated Recurrent Units for discrete driving regime classification with Long Short-Term Memory networks for continuous kinematic prediction, unifying discrete decision-making processes and continuous vehicular dynamics to comprehensively represent inter- and intra-driver heterogeneity. Driving regimes are identified using a bottom-up segmentation algorithm and Dynamic Time Warping, ensuring robust characterization of behavioral states across diverse traffic scenarios. Comparative analyses demonstrate that the framework significantly reduces prediction errors for acceleration (maximum MSE improvement reached 58.47\%), speed, and spacing metrics while reproducing critical traffic phenomena, such as stop-and-go wave propagation and oscillatory dynamics.
Abstract:We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
Abstract:Open-Ended object Detection (OED) is a novel and challenging task that detects objects and generates their category names in a free-form manner, without requiring additional vocabularies during inference. However, the existing OED models, such as GenerateU, require large-scale datasets for training, suffer from slow convergence, and exhibit limited performance. To address these issues, we present a novel and efficient Open-Det framework, consisting of four collaborative parts. Specifically, Open-Det accelerates model training in both the bounding box and object name generation process by reconstructing the Object Detector and the Object Name Generator. To bridge the semantic gap between Vision and Language modalities, we propose a Vision-Language Aligner with V-to-L and L-to-V alignment mechanisms, incorporating with the Prompts Distiller to transfer knowledge from the VLM into VL-prompts, enabling accurate object name generation for the LLM. In addition, we design a Masked Alignment Loss to eliminate contradictory supervision and introduce a Joint Loss to enhance classification, resulting in more efficient training. Compared to GenerateU, Open-Det, using only 1.5% of the training data (0.077M vs. 5.077M), 20.8% of the training epochs (31 vs. 149), and fewer GPU resources (4 V100 vs. 16 A100), achieves even higher performance (+1.0% in APr). The source codes are available at: https://github.com/Med-Process/Open-Det.
Abstract:Modern policy gradient algorithms, such as TRPO and PPO, outperform vanilla policy gradient in many RL tasks. Questioning the common belief that enforcing approximate trust regions leads to steady policy improvement in practice, we show that the more critical factor is the enhanced value estimation accuracy from more value update steps in each iteration. To demonstrate, we show that by simply increasing the number of value update steps per iteration, vanilla policy gradient itself can achieve performance comparable to or better than PPO in all the standard continuous control benchmark environments. Importantly, this simple change to vanilla policy gradient is significantly more robust to hyperparameter choices, opening up the possibility that RL algorithms may still become more effective and easier to use.
Abstract:Top-$k$ decoding is a widely used method for sampling from LLMs: at each token, only the largest $k$ next-token-probabilities are kept, and the next token is sampled after re-normalizing them to sum to unity. Top-$k$ and other sampling methods are motivated by the intuition that true next-token distributions are sparse, and the noisy LLM probabilities need to be truncated. However, to our knowledge, a precise theoretical motivation for the use of top-$k$ decoding is missing. In this work, we develop a theoretical framework that both explains and generalizes top-$k$ decoding. We view decoding at a fixed token as the recovery of a sparse probability distribution. We consider \emph{Bregman decoders} obtained by minimizing a separable Bregman divergence (for both the \emph{primal} and \emph{dual} cases) with a sparsity-inducing $\ell_0$ regularization. Despite the combinatorial nature of the objective, we show how to optimize it efficiently for a large class of divergences. We show that the optimal decoding strategies are greedy, and further that the loss function is discretely convex in $k$, so that binary search provably and efficiently finds the optimal $k$. We show that top-$k$ decoding arises as a special case for the KL divergence, and identify new decoding strategies that have distinct behaviors (e.g., non-linearly up-weighting larger probabilities after re-normalization).
Abstract:While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
Abstract:Multimodal Information Extraction (MIE) has gained attention for extracting structured information from multimedia sources. Traditional methods tackle MIE tasks separately, missing opportunities to share knowledge across tasks. Recent approaches unify these tasks into a generation problem using instruction-based T5 models with visual adaptors, optimized through full-parameter fine-tuning. However, this method is computationally intensive, and multi-task fine-tuning often faces gradient conflicts, limiting performance. To address these challenges, we propose collaborative multi-LoRA experts with achievement-based multi-task loss (C-LoRAE) for MIE tasks. C-LoRAE extends the low-rank adaptation (LoRA) method by incorporating a universal expert to learn shared multimodal knowledge from cross-MIE tasks and task-specific experts to learn specialized instructional task features. This configuration enhances the model's generalization ability across multiple tasks while maintaining the independence of various instruction tasks and mitigating gradient conflicts. Additionally, we propose an achievement-based multi-task loss to balance training progress across tasks, addressing the imbalance caused by varying numbers of training samples in MIE tasks. Experimental results on seven benchmark datasets across three key MIE tasks demonstrate that C-LoRAE achieves superior overall performance compared to traditional fine-tuning methods and LoRA methods while utilizing a comparable number of training parameters to LoRA.