Abstract:Website fingerprint (WF) attacks, which covertly monitor user communications to identify the web pages they visit, pose a serious threat to user privacy. Existing WF defenses attempt to reduce the attacker's accuracy by disrupting unique traffic patterns; however, they often suffer from the trade-off between overhead and effectiveness, resulting in less usefulness in practice. To overcome this limitation, we introduce Controllable Website Fingerprint Defense (CWFD), a novel defense perspective based on backdoor learning. CWFD exploits backdoor vulnerabilities in neural networks to directly control the attacker's model by designing trigger patterns based on network traffic. Specifically, CWFD injects only incoming packets on the server side into the target web page's traffic, keeping overhead low while effectively poisoning the attacker's model during training. During inference, the defender can influence the attacker's model through a 'red pill, blue pill' choice: traces with the trigger (red pill) lead to misclassification as the target web page, while normal traces (blue pill) are classified correctly, achieving directed control over the defense outcome. We use the Fast Levenshtein-like distance as the optimization objective to compute trigger patterns that can be effectively associated with our target page. Experiments show that CWFD significantly reduces RF's accuracy from 99% to 6% with 74% data overhead. In comparison, FRONT reduces accuracy to only 97% at similar overhead, while Palette achieves 32% accuracy with 48% more overhead. We further validate the practicality of our method in a real Tor network environment.
Abstract:Text-to-audio (TTA) model is capable of generating diverse audio from textual prompts. However, most mainstream TTA models, which predominantly rely on Mel-spectrograms, still face challenges in producing audio with rich content. The intricate details and texture required in Mel-spectrograms for such audio often surpass the models' capacity, leading to outputs that are blurred or lack coherence. In this paper, we begin by investigating the critical role of U-Net in Mel-spectrogram generation. Our analysis shows that in U-Net structure, high-frequency components in skip-connections and the backbone influence texture and detail, while low-frequency components in the backbone are critical for the diffusion denoising process. We further propose ``Mel-Refine'', a plug-and-play approach that enhances Mel-spectrogram texture and detail by adjusting different component weights during inference. Our method requires no additional training or fine-tuning and is fully compatible with any diffusion-based TTA architecture. Experimental results show that our approach boosts performance metrics of the latest TTA model Tango2 by 25\%, demonstrating its effectiveness.
Abstract:RGBT tracking usually suffers from various challenging factors of low resolution, similar appearance, extreme illumination, thermal crossover and occlusion, to name a few. Existing works often study complex fusion models to handle challenging scenarios, but can not well adapt to various challenges, which might limit tracking performance. To handle this problem, we propose a novel Dynamic Disentangled Fusion Network called DDFNet, which disentangles the fusion process into several dynamic fusion models via the challenge attributes to adapt to various challenging scenarios, for robust RGBT tracking. In particular, we design six attribute-based fusion models to integrate RGB and thermal features under the six challenging scenarios respectively.Since each fusion model is to deal with the corresponding challenges, such disentangled fusion scheme could increase the fusion capacity without the dependence on large-scale training data. Considering that every challenging scenario also has different levels of difficulty, we propose to optimize the combination of multiple fusion units to form each attribute-based fusion model in a dynamic manner, which could well adapt to the difficulty of the corresponding challenging scenario. To address the issue that which fusion models should be activated in the tracking process, we design an adaptive aggregation fusion module to integrate all features from attribute-based fusion models in an adaptive manner with a three-stage training algorithm. In addition, we design an enhancement fusion module to further strengthen the aggregated feature and modality-specific features. Experimental results on benchmark datasets demonstrate the effectiveness of our DDFNet against other state-of-the-art methods.
Abstract:In clinical medicine, precise image segmentation can provide substantial support to clinicians. However, achieving such precision often requires a large amount of finely annotated data, which can be costly. Scribble annotation presents a more efficient alternative, boosting labeling efficiency. However, utilizing such minimal supervision for medical image segmentation training, especially with scribble annotations, poses significant challenges. To address these challenges, we introduce ScribbleVS, a novel framework that leverages scribble annotations. We introduce a Regional Pseudo Labels Diffusion Module to expand the scope of supervision and reduce the impact of noise present in pseudo labels. Additionally, we propose a Dynamic Competitive Selection module for enhanced refinement in selecting pseudo labels. Experiments conducted on the ACDC and MSCMRseg datasets have demonstrated promising results, achieving performance levels that even exceed those of fully supervised methodologies. The codes of this study are available at https://github.com/ortonwang/ScribbleVS.
Abstract:Recent self-supervised learning (SSL) methods have demonstrated impressive results in learning visual representations from unlabeled remote sensing images. However, most remote sensing images predominantly consist of scenographic scenes containing multiple ground objects without explicit foreground targets, which limits the performance of existing SSL methods that focus on foreground targets. This raises the question: Is there a method that can automatically aggregate similar objects within scenographic remote sensing images, thereby enabling models to differentiate knowledge embedded in various geospatial patterns for improved feature representation? In this work, we present the Pattern Integration and Enhancement Vision Transformer (PIEViT), a novel self-supervised learning framework designed specifically for remote sensing imagery. PIEViT utilizes a teacher-student architecture to address both image-level and patch-level tasks. It employs the Geospatial Pattern Cohesion (GPC) module to explore the natural clustering of patches, enhancing the differentiation of individual features. The Feature Integration Projection (FIP) module further refines masked token reconstruction using geospatially clustered patches. We validated PIEViT across multiple downstream tasks, including object detection, semantic segmentation, and change detection. Experiments demonstrated that PIEViT enhances the representation of internal patch features, providing significant improvements over existing self-supervised baselines. It achieves excellent results in object detection, land cover classification, and change detection, underscoring its robustness, generalization, and transferability for remote sensing image interpretation tasks.
Abstract:In semi-supervised semantic segmentation (SSS), weak-to-strong consistency regularization techniques are widely utilized in recent works, typically combined with input-level and feature-level perturbations. However, the integration between weak-to-strong consistency regularization and network perturbation has been relatively rare. We note several problems with existing network perturbations in SSS that may contribute to this phenomenon. By revisiting network perturbations, we introduce a new approach for network perturbation to expand the existing weak-to-strong consistency regularization for unlabeled data. Additionally, we present a volatile learning process for labeled data, which is uncommon in existing research. Building upon previous work that includes input-level and feature-level perturbations, we present MLPMatch (Multi-Level-Perturbation Match), an easy-to-implement and efficient framework for semi-supervised semantic segmentation. MLPMatch has been validated on the Pascal VOC and Cityscapes datasets, achieving state-of-the-art performance. Code is available from https://github.com/LlistenL/MLPMatch.
Abstract:Semi-supervised learning has received considerable attention for its potential to leverage abundant unlabeled data to enhance model robustness. Pseudo labeling is a widely used strategy in semi supervised learning. However, existing methods often suffer from noise contamination, which can undermine model performance. To tackle this challenge, we introduce a novel Synergy-Guided Regional Supervision of Pseudo Labels (SGRS-Net) framework. Built upon the mean teacher network, we employ a Mix Augmentation module to enhance the unlabeled data. By evaluating the synergy before and after augmentation, we strategically partition the pseudo labels into distinct regions. Additionally, we introduce a Region Loss Evaluation module to assess the loss across each delineated area. Extensive experiments conducted on the LA dataset have demonstrated superior performance over state-of-the-art techniques, underscoring the efficiency and practicality of our framework.
Abstract:Video captioning generate a sentence that describes the video content. Existing methods always require a number of captions (\eg, 10 or 20) per video to train the model, which is quite costly. In this work, we explore the possibility of using only one or very few ground-truth sentences, and introduce a new task named few-supervised video captioning. Specifically, we propose a few-supervised video captioning framework that consists of lexically constrained pseudo-labeling module and keyword-refined captioning module. Unlike the random sampling in natural language processing that may cause invalid modifications (\ie, edit words), the former module guides the model to edit words using some actions (\eg, copy, replace, insert, and delete) by a pretrained token-level classifier, and then fine-tunes candidate sentences by a pretrained language model. Meanwhile, the former employs the repetition penalized sampling to encourage the model to yield concise pseudo-labeled sentences with less repetition, and selects the most relevant sentences upon a pretrained video-text model. Moreover, to keep semantic consistency between pseudo-labeled sentences and video content, we develop the transformer-based keyword refiner with the video-keyword gated fusion strategy to emphasize more on relevant words. Extensive experiments on several benchmarks demonstrate the advantages of the proposed approach in both few-supervised and fully-supervised scenarios. The code implementation is available at https://github.com/mlvccn/PKG_VidCap
Abstract:The emergence of deep learning (DL) has provided great opportunities for the high-throughput analysis of atomic-resolution micrographs. However, the DL models trained by image patches in fixed size generally lack efficiency and flexibility when processing micrographs containing diversified atomic configurations. Herein, inspired by the similarity between the atomic structures and graphs, we describe a few-shot learning framework based on an equivariant graph neural network (EGNN) to analyze a library of atomic structures (e.g., vacancies, phases, grain boundaries, doping, etc.), showing significantly promoted robustness and three orders of magnitude reduced computing parameters compared to the image-driven DL models, which is especially evident for those aggregated vacancy lines with flexible lattice distortion. Besides, the intuitiveness of graphs enables quantitative and straightforward extraction of the atomic-scale structural features in batches, thus statistically unveiling the self-assembly dynamics of vacancy lines under electron beam irradiation. A versatile model toolkit is established by integrating EGNN sub-models for single structure recognition to process images involving varied configurations in the form of a task chain, leading to the discovery of novel doping configurations with superior electrocatalytic properties for hydrogen evolution reactions. This work provides a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.
Abstract:Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to locate an arbitrary number of target objects and maintain their identities referred by a language expression in a video. This intricate task involves the reasoning of linguistic and visual modalities, along with the temporal association of target objects. However, the seminal work employs only loose feature fusion and overlooks the utilization of long-term information on tracked objects. In this study, we introduce a compact Transformer-based method, termed TenRMOT. We conduct feature fusion at both encoding and decoding stages to fully exploit the advantages of Transformer architecture. Specifically, we incrementally perform cross-modal fusion layer-by-layer during the encoding phase. In the decoding phase, we utilize language-guided queries to probe memory features for accurate prediction of the desired objects. Moreover, we introduce a query update module that explicitly leverages temporal prior information of the tracked objects to enhance the consistency of their trajectories. In addition, we introduce a novel task called Referring Multi-Object Tracking and Segmentation (RMOTS) and construct a new dataset named Ref-KITTI Segmentation. Our dataset consists of 18 videos with 818 expressions, and each expression averages 10.7 masks, which poses a greater challenge compared to the typical single mask in most existing referring video segmentation datasets. TenRMOT demonstrates superior performance on both the referring multi-object tracking and the segmentation tasks.