Abstract:As large language model (LLM) assistants become increasingly integrated into enterprise workflows, their ability to generate accurate, semantically aligned, and executable outputs is critical. However, current conversational business analytics (CBA) systems often lack built-in verification mechanisms, leaving users to manually validate potentially flawed results. This paper introduces two complementary verification techniques: Q*, which performs reverse translation and semantic matching between code and user intent, and Feedback+, which incorporates execution feedback to guide code refinement. Embedded within a generator-discriminator framework, these mechanisms shift validation responsibilities from users to the system. Evaluations on three benchmark datasets, Spider, Bird, and GSM8K, demonstrate that both Q* and Feedback+ reduce error rates and task completion time. The study also identifies reverse translation as a key bottleneck, highlighting opportunities for future improvement. Overall, this work contributes a design-oriented framework for building more reliable, enterprise-grade GenAI systems capable of trustworthy decision support.
Abstract:As generative AI systems are increasingly deployed in real-world applications, regulating multiple dimensions of model behavior has become essential. We focus on test-time filtering: a lightweight mechanism for behavior control that compares performance scores to estimated thresholds, and modifies outputs when these bounds are violated. We formalize the problem of enforcing multiple risk constraints with user-defined priorities, and introduce two efficient dynamic programming algorithms that leverage this sequential structure. The first, MULTIRISK-BASE, provides a direct finite-sample procedure for selecting thresholds, while the second, MULTIRISK, leverages data exchangeability to guarantee simultaneous control of the risks. Under mild assumptions, we show that MULTIRISK achieves nearly tight control of all constraint risks. The analysis requires an intricate iterative argument, upper bounding the risks by introducing several forms of intermediate symmetrized risk functions, and carefully lower bounding the risks by recursively counting jumps in symmetrized risk functions between appropriate risk levels. We evaluate our framework on a three-constraint Large Language Model alignment task using the PKU-SafeRLHF dataset, where the goal is to maximize helpfulness subject to multiple safety constraints, and where scores are generated by a Large Language Model judge and a perplexity filter. Our experimental results show that our algorithm can control each individual risk at close to the target level.
Abstract:A fine-grained data recipe is crucial for pre-training large language models, as it can significantly enhance training efficiency and model performance. One important ingredient in the recipe is to select samples based on scores produced by defined rules, LLM judgment, or statistical information in embeddings, which can be roughly categorized into quality and diversity metrics. Due to the high computational cost when applied to trillion-scale token pre-training datasets such as FineWeb and DCLM, these two or more types of metrics are rarely considered jointly in a single selection process. However, in our empirical study, selecting samples based on quality metrics exhibit severe diminishing returns during long-term pre-training, while selecting on diversity metrics removes too many valuable high-quality samples, both of which limit pre-trained LLMs' capabilities. Therefore, we introduce DATAMASK, a novel and efficient joint learning framework designed for large-scale pre-training data selection that can simultaneously optimize multiple types of metrics in a unified process, with this study focusing specifically on quality and diversity metrics. DATAMASK approaches the selection process as a mask learning problem, involving iterative sampling of data masks, computation of policy gradients based on predefined objectives with sampled masks, and updating of mask sampling logits. Through policy gradient-based optimization and various acceleration enhancements, it significantly reduces selection time by 98.9% compared to greedy algorithm, enabling our study to explore joint learning within trillion-scale tokens. With DATAMASK, we select a subset of about 10% from the 15 trillion-token FineWeb dataset, termed FineWeb-Mask. Evaluated across 12 diverse tasks, we achieves significant improvements of 3.2% on a 1.5B dense model and 1.9% on a 7B MoE model.
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.




Abstract:We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.




Abstract:In this paper, we present two effective policy learning algorithms for multi-agent online coordination(MA-OC) problem. The first one, \texttt{MA-SPL}, not only can achieve the optimal $(1-\frac{c}{e})$-approximation guarantee for the MA-OC problem with submodular objectives but also can handle the unexplored $\alpha$-weakly DR-submodular and $(\gamma,\beta)$-weakly submodular scenarios, where $c$ is the curvature of the investigated submodular functions, $\alpha$ denotes the diminishing-return(DR) ratio and the tuple $(\gamma,\beta)$ represents the submodularity ratios. Subsequently, in order to reduce the reliance on the unknown parameters $\alpha,\gamma,\beta$ inherent in the \texttt{MA-SPL} algorithm, we further introduce the second online algorithm named \texttt{MA-MPL}. This \texttt{MA-MPL} algorithm is entirely \emph{parameter-free} and simultaneously can maintain the same approximation ratio as the first \texttt{MA-SPL} algorithm. The core of our \texttt{MA-SPL} and \texttt{MA-MPL} algorithms is a novel continuous-relaxation technique termed as \emph{policy-based continuous extension}. Compared with the well-established \emph{multi-linear extension}, a notable advantage of this new \emph{policy-based continuous extension} is its ability to provide a lossless rounding scheme for any set function, thereby enabling us to tackle the challenging weakly submodular objectives. Finally, extensive simulations are conducted to validate the effectiveness of our proposed algorithms.
Abstract:The rapid scaling of large language models (LLMs) has made inference efficiency a primary bottleneck in the practical deployment. To address this, semi-structured sparsity offers a promising solution by strategically retaining $N$ elements out of every $M$ weights, thereby enabling hardware-friendly acceleration and reduced memory. However, existing (N:M)-compatible approaches typically fall into two categories: rule-based layerwise greedy search, which suffers from considerable errors, and gradient-driven combinatorial learning, which incurs prohibitive training costs. To tackle these challenges, we propose a novel linear-space probabilistic framework named MaskPro, which aims to learn a prior categorical distribution for every $M$ consecutive weights and subsequently leverages this distribution to generate the (N:M)-sparsity throughout an $N$-way sampling without replacement. Furthermore, to mitigate the training instability induced by the high variance of policy gradients in the super large combinatorial space, we propose a novel update method by introducing a moving average tracker of loss residuals instead of vanilla loss. Finally, we conduct comprehensive theoretical analysis and extensive experiments to validate the superior performance of MaskPro, as well as its excellent scalability in memory efficiency and exceptional robustness to data samples. Our code is available at https://github.com/woodenchild95/Maskpro.git.
Abstract:This paper investigates the influence of cognitive biases on Large Language Models (LLMs) outputs. Cognitive biases, such as confirmation and availability biases, can distort user inputs through prompts, potentially leading to unfaithful and misleading outputs from LLMs. Using a systematic framework, our study introduces various cognitive biases into prompts and assesses their impact on LLM accuracy across multiple benchmark datasets, including general and financial Q&A scenarios. The results demonstrate that even subtle biases can significantly alter LLM answer choices, highlighting a critical need for bias-aware prompt design and mitigation strategy. Additionally, our attention weight analysis highlights how these biases can alter the internal decision-making processes of LLMs, affecting the attention distribution in ways that are associated with output inaccuracies. This research has implications for Al developers and users in enhancing the robustness and reliability of Al applications in diverse domains.




Abstract:Top-$k$ decoding is a widely used method for sampling from LLMs: at each token, only the largest $k$ next-token-probabilities are kept, and the next token is sampled after re-normalizing them to sum to unity. Top-$k$ and other sampling methods are motivated by the intuition that true next-token distributions are sparse, and the noisy LLM probabilities need to be truncated. However, to our knowledge, a precise theoretical motivation for the use of top-$k$ decoding is missing. In this work, we develop a theoretical framework that both explains and generalizes top-$k$ decoding. We view decoding at a fixed token as the recovery of a sparse probability distribution. We consider \emph{Bregman decoders} obtained by minimizing a separable Bregman divergence (for both the \emph{primal} and \emph{dual} cases) with a sparsity-inducing $\ell_0$ regularization. Despite the combinatorial nature of the objective, we show how to optimize it efficiently for a large class of divergences. We show that the optimal decoding strategies are greedy, and further that the loss function is discretely convex in $k$, so that binary search provably and efficiently finds the optimal $k$. We show that top-$k$ decoding arises as a special case for the KL divergence, and identify new decoding strategies that have distinct behaviors (e.g., non-linearly up-weighting larger probabilities after re-normalization).




Abstract:In the past few years, time series foundation models have achieved superior predicting accuracy. However, real-world time series often exhibit significant diversity in their temporal patterns across different time spans and domains, making it challenging for a single model architecture to fit all complex scenarios. In addition, time series data may have multiple variables exhibiting complex correlations between each other. Recent mainstream works have focused on modeling times series in a channel-independent manner in both pretraining and finetuning stages, overlooking the valuable inter-series dependencies. To this end, we propose \textbf{Time Tracker} for better predictions on multivariate time series data. Firstly, we leverage sparse mixture of experts (MoE) within Transformers to handle the modeling of diverse time series patterns, thereby alleviating the learning difficulties of a single model while improving its generalization. Besides, we propose Any-variate Attention, enabling a unified model structure to seamlessly handle both univariate and multivariate time series, thereby supporting channel-independent modeling during pretraining and channel-mixed modeling for finetuning. Furthermore, we design a graph learning module that constructs relations among sequences from frequency-domain features, providing more precise guidance to capture inter-series dependencies in channel-mixed modeling. Based on these advancements, Time Tracker achieves state-of-the-art performance in predicting accuracy, model generalization and adaptability.