Abstract:This paper aims to address the challenge of reconstructing long volumetric videos from multi-view RGB videos. Recent dynamic view synthesis methods leverage powerful 4D representations, like feature grids or point cloud sequences, to achieve high-quality rendering results. However, they are typically limited to short (1~2s) video clips and often suffer from large memory footprints when dealing with longer videos. To solve this issue, we propose a novel 4D representation, named Temporal Gaussian Hierarchy, to compactly model long volumetric videos. Our key observation is that there are generally various degrees of temporal redundancy in dynamic scenes, which consist of areas changing at different speeds. Motivated by this, our approach builds a multi-level hierarchy of 4D Gaussian primitives, where each level separately describes scene regions with different degrees of content change, and adaptively shares Gaussian primitives to represent unchanged scene content over different temporal segments, thus effectively reducing the number of Gaussian primitives. In addition, the tree-like structure of the Gaussian hierarchy allows us to efficiently represent the scene at a particular moment with a subset of Gaussian primitives, leading to nearly constant GPU memory usage during the training or rendering regardless of the video length. Extensive experimental results demonstrate the superiority of our method over alternative methods in terms of training cost, rendering speed, and storage usage. To our knowledge, this work is the first approach capable of efficiently handling minutes of volumetric video data while maintaining state-of-the-art rendering quality. Our project page is available at: https://zju3dv.github.io/longvolcap.
Abstract:Dual function radar and communication (DFRC) is a promising research direction within integrated sensing and communication (ISAC), improving hardware and spectrum efficiency by merging sensing and communication (S&C) functionalities into a shared platform. However, the DFRC receiver (DFRC-R) is tasked with both uplink communication signal detection and simultaneously target-related parameter estimation from the echoes, leading to issues with mutual interference. In this paper, a projection-based scheme is proposed to equivalently transform the joint signal detection and target estimation problem into a joint signal detection process across multiple snapshots. Compared with conventional successive interference cancellation (SIC) schemes, our proposed approach achieves a higher signal-to-noise ratio (SNR), and a higher ergodic rate when the radar signal is non-negligible. Nonetheless, it introduces an ill-conditioned signal detection problem, which is addressed using a non-linear detector. By jointly processing an increased number of snapshots, the proposed scheme can achieve high S&C performance simultaneously.
Abstract:The household rearrangement task involves spotting misplaced objects in a scene and accommodate them with proper places. It depends both on common-sense knowledge on the objective side and human user preference on the subjective side. In achieving such task, we propose to mine object functionality with user preference alignment directly from the scene itself, without relying on human intervention. To do so, we work with scene graph representation and propose LLM-enhanced scene graph learning which transforms the input scene graph into an affordance-enhanced graph (AEG) with information-enhanced nodes and newly discovered edges (relations). In AEG, the nodes corresponding to the receptacle objects are augmented with context-induced affordance which encodes what kind of carriable objects can be placed on it. New edges are discovered with newly discovered non-local relations. With AEG, we perform task planning for scene rearrangement by detecting misplaced carriables and determining a proper placement for each of them. We test our method by implementing a tiding robot in simulator and perform evaluation on a new benchmark we build. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on misplacement detection and the following rearrangement planning.
Abstract:Multi-instance point cloud registration estimates the poses of multiple instances of a model point cloud in a scene point cloud. Extracting accurate point correspondence is to the center of the problem. Existing approaches usually treat the scene point cloud as a whole, overlooking the separation of instances. Therefore, point features could be easily polluted by other points from the background or different instances, leading to inaccurate correspondences oblivious to separate instances, especially in cluttered scenes. In this work, we propose MIRETR, Multi-Instance REgistration TRansformer, a coarse-to-fine approach to the extraction of instance-aware correspondences. At the coarse level, it jointly learns instance-aware superpoint features and predicts per-instance masks. With instance masks, the influence from outside of the instance being concerned is minimized, such that highly reliable superpoint correspondences can be extracted. The superpoint correspondences are then extended to instance candidates at the fine level according to the instance masks. At last, an efficient candidate selection and refinement algorithm is devised to obtain the final registrations. Extensive experiments on three public benchmarks demonstrate the efficacy of our approach. In particular, MIRETR outperforms the state of the arts by 16.6 points on F1 score on the challenging ROBI benchmark. Code and models are available at https://github.com/zhiyuanYU134/MIRETR.
Abstract:Recent advancements in generative AI have enabled ubiquitous access to large language models (LLMs). Empowered by their exceptional capabilities to understand and generate human-like text, these models are being increasingly integrated into our society. At the same time, there are also concerns on the potential misuse of this powerful technology, prompting defensive measures from service providers. To overcome such protection, jailbreaking prompts have recently emerged as one of the most effective mechanisms to circumvent security restrictions and elicit harmful content originally designed to be prohibited. Due to the rapid development of LLMs and their ease of access via natural languages, the frontline of jailbreak prompts is largely seen in online forums and among hobbyists. To gain a better understanding of the threat landscape of semantically meaningful jailbreak prompts, we systemized existing prompts and measured their jailbreak effectiveness empirically. Further, we conducted a user study involving 92 participants with diverse backgrounds to unveil the process of manually creating jailbreak prompts. We observed that users often succeeded in jailbreak prompts generation regardless of their expertise in LLMs. Building on the insights from the user study, we also developed a system using AI as the assistant to automate the process of jailbreak prompt generation.
Abstract:In this paper, we investigate a double-active-reconfigurable intelligent surface (RIS)-aided downlink wireless communication system, where a multi-antenna base station (BS) serves multiple single-antenna users with both double reflection and single reflection links. Due to the signal amplification capability of active RISs, the mutual influence between active RISs, which is termed as the "inter-excitation" effect, cannot be ignored. Then, we develop a feedback-type model to characterize the signal containing the inter-excitation effect. Based on the signal model, we formulate a weighted sum rate (WSR) maximization problem by jointly optimizing the beamforming matrix at the BS and the reflecting coefficient matrices at the two active RISs, subject to power constraints at the BS and active RISs, as well as the maximum amplification gain constraints of the active RISs. To solve this non-convex problem, we first transform the problem into a more tractable form using the fractional programming (FP) method. Then, by introducing auxiliary variables, the problem can be converted into an equivalent form that can be solved by using a low-complexity penalty dual decomposition (PDD) algorithm. Finally, simulation results indicate that it is crucial to consider the inter-excitation effect between active RISs in beamforming design for double-active-RIS-aided communication systems. Additionally, it prevails over other benchmark schemes with single active RIS and double passive RISs in terms of achievable rate.
Abstract:Large Language Models (LLMs) excel in processing and generating human language, powered by their ability to interpret and follow instructions. However, their capabilities can be exploited through prompt injection attacks. These attacks manipulate LLM-integrated applications into producing responses aligned with the attacker's injected content, deviating from the user's actual requests. The substantial risks posed by these attacks underscore the need for a thorough understanding of the threats. Yet, research in this area faces challenges due to the lack of a unified goal for such attacks and their reliance on manually crafted prompts, complicating comprehensive assessments of prompt injection robustness. We introduce a unified framework for understanding the objectives of prompt injection attacks and present an automated gradient-based method for generating highly effective and universal prompt injection data, even in the face of defensive measures. With only five training samples (0.3% relative to the test data), our attack can achieve superior performance compared with baselines. Our findings emphasize the importance of gradient-based testing, which can avoid overestimation of robustness, especially for defense mechanisms.
Abstract:This paper investigates a reconfigurable intelligent surface (RIS)-assisted integrated sensing, communication, and computation (ISCC) system. In this paradigm, the integrated sensing and communication (ISAC)-enabled user equipments (UEs) simultaneously detect the target and offload the computational tasks of radar sensing to the edge computing server (ECS) through their communication functionality. To enhance the efficiency of computation offloading, we deploy an RIS to mitigate the high attenuation between UEs and the ECS. A latency minimization problem is investigated with constraints on UE's transmit power, radar signal-to-interference-plus-noise ratio (SINR), RIS phase shift, and computation capability. We propose an algorithm based on the block coordinate descent (BCD) method to decouple the original problem into two subproblems, and then the computational and beamforming variables are optimized alternately utilizing efficient iterative algorithms. Simulation results demonstrate the effectiveness of our proposed algorithm.
Abstract:In this paper, we investigate an reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. Our objective is to maximize the achievable sum rate of the multi-antenna communication users through the joint active and passive beamforming. {Specifically}, the weighted minimum mean-square error (WMMSE) method is { first} used to reformulate the original problem into an equivalent one. Then, we utilize an alternating optimization (AO) { algorithm} to decouple the optimization variables and decompose this challenging problem into two subproblems. Given reflecting coefficients, a penalty-based algorithm is utilized to deal with the non-convex radar signal-to-noise ratio (SNR) constraints. For the given beamforming matrix of the BS, we apply majorization-minimization (MM) to transform the problem into a quadratic constraint quadratic programming (QCQP) problem, which is ultimately solved using a semidefinite relaxation (SDR)-based algorithm. Simulation results illustrate the advantage of deploying RIS in the considered multi-user MIMO (MU-MIMO) ISAC systems.
Abstract:Integrated sensing and communication (ISAC) technology has been considered as one of the key candidate technologies in the next-generation wireless communication systems. However, when radar and communication equipment coexist in the same system, i.e. radar-communication coexistence (RCC), the interference from communication systems to radar can be large and cannot be ignored. Recently, reconfigurable intelligent surface (RIS) has been introduced into RCC systems to reduce the interference. However, the "multiplicative fading" effect introduced by passive RIS limits its performance. To tackle this issue, we consider a double active RIS-assisted RCC system, which focuses on the design of the radar's beamforming vector and the active RISs' reflecting coefficient matrices, to maximize the achievable data rate of the communication system. The considered system needs to meet the radar detection constraint and the power budgets at the radar and the RISs. Since the problem is non-convex, we propose an algorithm based on the penalty dual decomposition (PDD) framework. Specifically, we initially introduce auxiliary variables to reformulate the coupled variables into equation constraints and incorporate these constraints into the objective function through the PDD framework. Then, we decouple the equivalent problem into several subproblems by invoking the block coordinate descent (BCD) method. Furthermore, we employ the Lagrange dual method to alternately optimize these subproblems. Simulation results verify the effectiveness of the proposed algorithm. Furthermore, the results also show that under the same power budget, deploying double active RISs in RCC systems can achieve higher data rate than those with single active RIS and double passive RISs.