Sherman
Abstract:The recently proposed multi-chirp waveform, affine frequency division multiplexing (AFDM), is considered as a potential candidate for integrated sensing and communication (ISAC). However, acquiring accurate target sensing parameter information becomes challenging due to fractional delay and Doppler shift occurrence, as well as effects introduced by the coexistence of near-field (NF) and far-field (FF) targets associated with large-scale antenna systems. In this paper, we propose a novel angle-delay-Doppler estimation scheme for AFDM-ISAC system in mixed NF and FF scenarios. Specifically, we model the received ISAC signals as a third-order tensor that admits a low-rank CANDECOMP/PARAFAC (CP) format. By employing the Vandermonde nature of the factor matrix and the spatial smoothing technique, we develop a structured CP decomposition method that guarantees the condition for uniqueness. We further propose a low-complexity estimation scheme to acquire target sensing parameters with fractional values, including angle of arrival/departure (AoA/AoD), delay and Doppler shift accurately. We also derive the Cram\'er-Rao Lower Bound (CRLB) as a benchmark and analyze the complexity of our proposed scheme. Finally, simulation results are provided to demonstrate the effectiveness and superiority of our proposed scheme.
Abstract:Large language models (LLMs) face significant challenges in specialized domains like telecommunication (Telecom) due to technical complexity, specialized terminology, and rapidly evolving knowledge. Traditional methods, such as scaling model parameters or retraining on domain-specific corpora, are computationally expensive and yield diminishing returns, while existing approaches like retrieval-augmented generation, mixture of experts, and fine-tuning struggle with accuracy, efficiency, and coordination. To address this issue, we propose Telecom mixture of models (TeleMoM), a consensus-driven ensemble framework that integrates multiple LLMs for enhanced decision-making in Telecom. TeleMoM employs a two-stage process: proponent models generate justified responses, and an adjudicator finalizes decisions, supported by a quality-checking mechanism. This approach leverages strengths of diverse models to improve accuracy, reduce biases, and handle domain-specific complexities effectively. Evaluation results demonstrate that TeleMoM achieves a 9.7\% increase in answer accuracy, highlighting its effectiveness in Telecom applications.
Abstract:In this paper, we investigate reconfigurable pixel antenna (RPA)-based electronic movable antennas (REMAs) for multiuser communications. First, we model each REMA as an antenna characterized by a set of predefined and discrete selectable radiation positions within the radiating region. Considering the trade-off between performance and cost, we propose two types of REMA-based arrays: the partially-connected RPA-based electronic movable-antenna array (PC-REMAA) and fully-connected REMAA (FC-REMAA). Then, we formulate a multiuser sum-rate maximization problem subject to the power constraint and hardware constraints of the PC-REMAA or FC-REMAA. To solve this problem, we propose a two-step multiuser beamforming and antenna selection scheme. In the first step, we develop a two-loop joint beamforming and antenna selection (TL-JBAS) algorithm. In the second step, we apply the coordinate descent method to further enhance the solution of the TL-JBAS algorithm. In addition, we revisit mechanical movable antennas (MMAs) to establish a benchmark for evaluating the performance of REMA-enabled multiuser communications, where MMAs can continuously adjust the positions within the transmission region. We also formulate a sum-rate maximization problem for MMA-enabled multiuser communications and propose an alternating beamforming and antenna position optimization scheme to solve it. Finally, we analyze the performance gap between REMAs and MMAs. Based on Fourier analysis, we derive the maximum power loss of REMAs compared to MMAs for any given position interval. Specifically, we show that the REMA incurs a maximum power loss of only 3.25\% compared to the MMA when the position interval is set to one-tenth of the wavelength. Simulation results demonstrate the effectiveness of the proposed methods.
Abstract:Flexible-geometry arrays have garnered much attention in wireless communications, which dynamically adjust wireless channels to improve the system performance. In this paper, we propose a novel flexible-geometry array for a $360^\circ$ coverage, named flxible cylindrical array (FCLA), comprised of multiple flexible circular arrays (FCAs). The elements in each FCA can revolve around the circle track to change their horizontal positions, and the FCAs can move along the vertical axis to change the elements' heights. Considering that horizontal revolving can change the antenna orientation, we adopt both the omni-directional and the directional antenna patterns. Based on the regularized zero-forcing (RZF) precoding scheme, we formulate a particular compressive sensing (CS) problem incorporating joint precoding and antenna position optimization, and propose two effective methods, namely FCLA-J and FCLA-A, to solve it. Specifically, the first method involves jointly optimizing the element's revolving angle, height, and precoding coefficient within a single CS framework. The second method decouples the CS problem into two subproblems by utilizing an alternative sparse optimization approach for the revolving angle and height, thereby reducing time complexity. Simulation results reveal that, when utilizing directional radiation patterns, FCLA-J and FCLA-A achieve substantial performance improvements of 43.32\% and 25.42\%, respectively, compared to uniform cylindrical arrays (UCLAs) with RZF precoding.
Abstract:Typical reconfigurable intelligent surface (RIS) implementations include metasurfaces with almost passive unit elements capable of reflecting their incident waves in controllable ways, enhancing wireless communications in a cost-effective manner. In this paper, we advance the concept of intelligent metasurfaces by introducing a flexible array geometry, termed flexible intelligent metasurface (FIM), which supports both element movement (EM) and passive beamforming (PBF). In particular, based on the single-input single-output (SISO) system setup, we first compare three modes of FIM, namely, EM-only, PBF-only, and EM-PBF, in terms of received signal power under different FIM and channel setups. The PBF-only mode, which only adjusts the reflect phase, is shown to be less effective than the EM-only mode in enhancing received signal strength. In a multi-element, multi-path scenario, the EM-only mode improves the received signal power by 125% compared to the PBF-only mode. The EM-PBF mode, which optimizes both element positions and phases, further enhances performance. Additionally, we investigate the channel estimation problem for FIM systems by designing a protocol that gathers EM and PBF measurements, enabling the formulation of a compressive sensing problem for joint cascaded and direct channel estimation. We then propose a sparse recovery algorithm called clustering mean-field variational sparse Bayesian learning, which enhances estimation performance while maintaining low complexity.
Abstract:The recently proposed multi-chirp waveform, affine frequency division multiplexing (AFDM), is regarded as a prospective candidate for integrated sensing and communication (ISAC) due to its robust performance in high-mobility scenarios and full diversity achievement in doubly dispersive channels. However, the insufficient Doppler resolution caused by limited transmission duration can reduce the accuracy of parameter estimation. In this paper, we propose a new off-grid target parameter estimation scheme to jointly estimate the range and velocity of the targets for AFDM-ISAC system, where the off-grid Doppler components are incorporated to enhance estimation accuracy. Specifically, we form the sensing model as an off-grid sparse signal recovery problem relying on the virtual delay and Doppler grids defined in the discrete affine Fourier (DAF) domain, where the off-grid components are regarded as hyper-parameters for estimation. We also employ the expectation-maximization (EM) technique via a sparse Bayesian learning (SBL) framework to update hyper-parameters iteratively. Simulation results indicate that our proposed off-grid algorithm outperforms existing algorithms in sensing performance and is highly robust to the AFDM-ISAC high-mobility scenario.
Abstract:Wireless signal recognition (WSR) is a crucial technique for intelligent communications and spectrum sharing in the next six-generation (6G) wireless communication networks. It can be utilized to enhance network performance and efficiency, improve quality of service (QoS), and improve network security and reliability. Additionally, WSR can be applied for military applications such as signal interception, signal race, and signal abduction. In the past decades, great efforts have been made for the research of WSR. Earlier works mainly focus on model-based methods, including likelihood-based (LB) and feature-based (FB) methods, which have taken the leading position for many years. With the emergence of artificial intelligence (AI), intelligent methods including machine learning-based (ML-based) and deep learning-based (DL-based) methods have been developed to extract the features of the received signals and perform the classification. In this work, we provide a comprehensive review of WSR from the view of applications, main tasks, recent advances, datasets and evaluation metrics, challenges, and future directions. Specifically, intelligent WSR methods are introduced from the perspective of model, data, learning and implementation. Moreover, we analyze the challenges for WSR from the view of complex, dynamic, and open 6G wireless environments and discuss the future directions for WSR. This survey is expected to provide a comprehensive overview of the state-of-the-art WSR techniques and inspire new research directions for WSR in 6G networks.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:Uplink integrated sensing and communication (ISAC) systems have recently emerged as a promising research direction, enabling simultaneous uplink signal detection and target sensing. In this paper, we propose flexible projection (FP)-type receivers that unify the projection-type receivers and the successive interference cancellation (SIC)-type receivers by using a flexible tradeoff factor to adapt to dynamically changing uplink ISAC scenarios. The FP-type receivers address the joint signal detection and target response estimation problem through two coordinated phases: 1) Communication signal detection using a reconstructed signal whose composition is controlled by the tradeoff factor, followed by 2) Target response estimation performed through subtraction of the detected communication signal from the received signal. With adjustable tradeoff factors, the FP-type receivers can balance the enhancement of the signal-to-interference-plus-noise ratio (SINR) with the reduction of correlation in the reconstructed signal for communication signal detection. The pairwise error probabilities (PEPs) are analyzed for both maximum likelihood (ML) and zero-forcing (ZF) detectors, revealing that the optimal tradeoff factor should be determined based on the adopted detection algorithm and the relative power of the sensing and communication (S&C) signal. A homotopy optimization framework is first applied for the FP-type receivers with a fixed trade-off factor. This framework is then extended to develop dynamic FP (DFP)-type receivers, which iteratively adjust the trade-off factor for improved algorithm performance and environmental adaptability. Subsequently, two extensions are explored to further enhance the receivers' performance: parallel DFP (PDFP)-type receivers and a block-structured receiver design. Finally, the effectiveness of the proposed receiver designs is verified via simulations.
Abstract:Cell-free (CF) massive multiple-input multiple-output (mMIMO) systems offer high spectral efficiency (SE) through multiple distributed access points (APs). However, the large number of antennas increases power consumption. We propose incorporating stacked intelligent metasurfaces (SIM) into CF mMIMO systems as a cost-effective, energy-efficient solution. This paper focuses on optimizing the joint power allocation of APs and the phase shift of SIMs to maximize the sum SE. To address this complex problem, we introduce a fully distributed multi-agent reinforcement learning (MARL) algorithm. Our novel algorithm, the noisy value method with a recurrent policy in multi-agent policy optimization (NVR-MAPPO), enhances performance by encouraging diverse exploration under centralized training and decentralized execution. Simulations demonstrate that NVR-MAPPO significantly improves sum SE and robustness across various scenarios.