Abstract:Intelligent surfaces represent a breakthrough technology capable of customizing the wireless channel cost-effectively. However, the existing works generally focus on planar wavefront, neglecting near-field spherical wavefront characteristics caused by large array aperture and high operation frequencies in the terahertz (THz). Additionally, the single-layer reconfigurable intelligent surface (RIS) lacks the signal processing ability to mitigate the computational complexity at the base station (BS). To address this issue, we introduce a novel stacked intelligent metasurfaces (SIM) comprised of an array of programmable metasurface layers. The SIM aims to substitute conventional digital baseband architecture to execute computing tasks with ultra-low processing delay, albeit with a reduced number of radio-frequency (RF) chains and low-resolution digital-to-analog converters. In this paper, we present a SIM-aided multiuser multiple-input single-output (MU-MISO) near-field system, where the SIM is integrated into the BS to perform beamfocusing in the wave domain and customize an end-to-end channel with minimized inter-user interference. Finally, the numerical results demonstrate that near-field communication achieves superior spatial gain over the far-field, and the SIM effectively suppresses inter-user interference as the wireless signals propagate through it.
Abstract:Rydberg atomic quantum receivers exhibit great potential in assisting classical wireless communications due to their outstanding advantages in detecting radio frequency signals. To realize this potential, we integrate a Rydberg atomic quantum receiver into a classical multi-user multiple-input multiple-output (MIMO) scheme to form a multi-user Rydberg atomic quantum MIMO (RAQ-MIMO) system for the uplink. To study this system, we first construct an equivalent baseband signal model, which facilitates convenient system design, signal processing and optimizations. We then study the ergodic achievable rates under both the maximum ratio combining (MRC) and zero-forcing (ZF) schemes by deriving their tight lower bounds. We next compare the ergodic achievable rates of the RAQ-MIMO and the conventional massive MIMO schemes by offering a closed-form expression for the difference of their ergodic achievable rates, which allows us to directly compare the two systems. Our results show that RAQ-MIMO allows the average transmit power of users to be $\sim 20$ dBm lower than that of the conventional massive MIMO. Viewed from a different perspective, an extra $\sim 7$ bits/s/Hz/user rate becomes achievable by ZF RAQ-MIMO, when equipping $50 \sim 500$ receive elements for receiving $1 \sim 100$ user signals at an enough transmit power (e.g., $\ge 20$ dBm).
Abstract:Quantum sensing technologies have experienced rapid progresses since entering the `second quantum revolution'. Among various candidates, schemes relying on Rydberg atoms exhibit compelling advantages for detecting radio frequency signals. Based on this, Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing. To harness the advantages and exploit the potential of RAQRs in wireless sensing, we investigate the realization of the direction of arrival (DOA) estimation by RAQRs. Specifically, we first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection and propose the corresponding signal model of this sensing system. Furthermore, we propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT relying on our model. The proposed algorithm solves the sensor gain mismatch problem, which is due to the presence of the RF local oscillator in the RAQ-ULA and cannot be well addressed by using the conventional ESPRIT. Lastly, we characterize our scheme through numerical simulations.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Intelligent metasurfaces have demonstrated great promise in revolutionizing wireless communications. One notable example is the two-dimensional (2D) programmable metasurface, which is also known as reconfigurable intelligent surfaces (RIS) to manipulate the wireless propagation environment to enhance network coverage. More recently, three-dimensional (3D) stacked intelligent metasurfaces (SIM) have been developed to substantially improve signal processing efficiency by directly processing analog electromagnetic signals in the wave domain. Another exciting breakthrough is the flexible intelligent metasurface (FIM), which possesses the ability to morph its 3D surface shape in response to dynamic wireless channels and thus achieve diversity gain. In this paper, we provide a comprehensive overview of these emerging intelligent metasurface technologies. We commence by examining recent experiments of RIS and exploring its applications from four perspectives. Furthermore, we delve into the fundamental principles underlying SIM, discussing relevant prototypes as well as their applications. Numerical results are also provided to illustrate the potential of SIM for analog signal processing. Finally, we review the state-of-the-art of FIM technology, discussing its impact on wireless communications and identifying the key challenges of integrating FIMs into wireless networks.
Abstract:Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions.We provide code and data at https://github.com/qiyu3816/DiffSG.
Abstract:The Rydberg atomic quantum receiver (RAQR) is an emerging quantum precision sensing platform designed for receiving radio frequency (RF) signals. It relies on creation of Rydberg atoms from normal atoms by exciting one or more electrons to a very high energy level, which in turn makes the atom sensitive to RF signals. The RAQR realizes RF-to-optical conversion based on light-atom interaction relying on the so called electromagnetically induced transparency (EIT) and Aulter-Townes splitting (ATS), so that the desired RF signal can be read out optically. The large dipole moments of Rydberg atoms associated with rich choices of Rydberg states and various modulation schemes facilitate an ultra-high sensitivity ($\sim$ nV/cm/$\sqrt{\text{Hz}}$) and an ultra-broadband tunability (near direct-current to Terahertz). RAQRs also exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers. Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing. To fully harness their potential in a wide variety of applications, we commence by outlining the underlying fundamentals of Rydberg atoms, followed by the principles, structures, and theories of RAQRs. Finally, we conceive Rydberg atomic quantum single-input single-output (RAQ-SISO) and multiple-input multiple-output (RAQ-MIMO) schemes for facilitating the integration of RAQRs with classical wireless systems, and conclude with a set of potent research directions.
Abstract:Accurate localization of mobile terminals is a pivotal aspect of integrated sensing and communication systems. Traditional fingerprint-based localization methods, which infer coordinates from channel information within pre-set rectangular areas, often face challenges due to the heterogeneous distribution of fingerprints inherent in non-line-of-sight (NLOS) scenarios, particularly within orthogonal frequency division multiplexing systems. To overcome this limitation, we develop a novel multi-sources information fusion learning framework referred to as the Autosync Multi-Domains NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results reveal that AMDNLoc achieves an impressive NLOS localization accuracy of 1.46 meters on typical wireless artificial intelligence research datasets and demonstrates significant improvements in interpretability, adaptability, and scalability.
Abstract:Hannan Limitation successfully links the directivity characteristics of 2D arrays with the aperture gain limit, providing the radiation efficiency upper limit for large 2D planar antenna arrays. This demonstrates the inevitable radiation efficiency degradation caused by mutual coupling effects between array elements. However, this limitation is derived based on the assumption of infinitely large 2D arrays, which means that it is not an accurate law for small-size arrays. In this paper, we extend this theory and propose an estimation formula for the radiation efficiency upper limit of finite-sized 2D arrays. Furthermore, we analyze a 3D array structure consisting of two parallel 2D arrays. Specifically, we provide evaluation formulas for the mutual coupling strengths for both infinite and finite size arrays and derive the fundamental efficiency limit of 3D arrays. Moreover, based on the established gain limit of antenna arrays with fixed aperture sizes, we derive the achievable gain limit of finite size 3D arrays. Besides the performance analyses, we also investigate the spatial radiation characteristics of the considered 3D array structure, offering a feasible region for 2D phase settings under a given energy attenuation threshold. Through simulations, we demonstrate the effectiveness of our proposed theories and gain advantages of 3D arrays for better spatial coverage under various scenarios.