Abstract:Existing learning models often exhibit poor generalization when deployed across diverse scenarios. It is mainly due to that the underlying reference frame of the data varies with the deployment environment and settings. However, despite the data of each scenario has its distinct reference frame, its generation generally follows the same underlying physical rule. Based on these findings, this article proposes a brand-new universal deep learning framework named analogical learning (AL), which provides a highly efficient way to implicitly retrieve the reference frame information associated with a scenario and then to make accurate prediction by relative analogy across scenarios. Specifically, an elegant bipartite neural network architecture called Mateformer is designed, the first part of which calculates the relativity within multiple feature spaces between the input data and a small amount of embedded data from the current scenario, while the second part uses these relativity to guide the nonlinear analogy. We apply AL to the typical multi-scenario learning problem of intelligent wireless localization in cellular networks. Extensive experiments show that AL achieves state-of-the-art accuracy, stable transferability and robust adaptation to new scenarios without any tuning, and outperforming conventional methods with a precision improvement of nearly two orders of magnitude. All data and code are available at https://github.com/ziruichen-research/ALLoc.
Abstract:Large language models (LLMs) face significant challenges in specialized domains like telecommunication (Telecom) due to technical complexity, specialized terminology, and rapidly evolving knowledge. Traditional methods, such as scaling model parameters or retraining on domain-specific corpora, are computationally expensive and yield diminishing returns, while existing approaches like retrieval-augmented generation, mixture of experts, and fine-tuning struggle with accuracy, efficiency, and coordination. To address this issue, we propose Telecom mixture of models (TeleMoM), a consensus-driven ensemble framework that integrates multiple LLMs for enhanced decision-making in Telecom. TeleMoM employs a two-stage process: proponent models generate justified responses, and an adjudicator finalizes decisions, supported by a quality-checking mechanism. This approach leverages strengths of diverse models to improve accuracy, reduce biases, and handle domain-specific complexities effectively. Evaluation results demonstrate that TeleMoM achieves a 9.7\% increase in answer accuracy, highlighting its effectiveness in Telecom applications.
Abstract:The transition from 5G to 6G mobile networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), driven by Artificial Intelligence (AI) and Machine Learning (ML), are designed to automate the entire lifecycle of network operations with minimal human intervention, presenting a promising solution for enhancing automation in 5G/6G networks. However, the implementation of ZTNs brings forth the need for autonomous and robust cybersecurity solutions, as ZTNs rely heavily on automation. AI/ML algorithms are widely used to develop cybersecurity mechanisms, but require substantial specialized expertise and encounter model drift issues, posing significant challenges in developing autonomous cybersecurity measures. Therefore, this paper proposes an automated security framework targeting Physical Layer Authentication (PLA) and Cross-Layer Intrusion Detection Systems (CLIDS) to address security concerns at multiple Internet protocol layers. The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments. Experimental results illustrate that the proposed framework achieves high performance on the public Radio Frequency (RF) fingerprinting and the Canadian Institute for CICIDS2017 datasets, showcasing its effectiveness in addressing PLA and CLIDS tasks within dynamic and complex networking environments. Furthermore, the paper explores open challenges and research directions in the 5G/6G cybersecurity domain. This framework represents a significant advancement towards fully autonomous and secure 6G networks, paving the way for future innovations in network automation and cybersecurity.
Abstract:Flexible intelligent metasurfaces (FIMs) constitute a promising technology that could significantly boost the wireless network capacity. An FIM is essentially a soft array made up of many low-cost radiating elements that can independently emit electromagnetic signals. What's more, each element can flexibly adjust its position, even perpendicularly to the surface, to morph the overall 3D shape. In this paper, we study the potential of FIMs in point-to-point multiple-input multiple-output (MIMO) communications, where two FIMs are used as transceivers. In order to characterize the capacity limits of FIM-aided narrowband MIMO transmissions, we formulate an optimization problem for maximizing the MIMO channel capacity by jointly optimizing the 3D surface shapes of the transmitting and receiving FIMs, as well as the transmit covariance matrix, subject to a specific total transmit power constraint and to the maximum morphing range of the FIM. To solve this problem, we develop an efficient block coordinate descent (BCD) algorithm. The BCD algorithm iteratively updates the 3D surface shapes of the FIMs and the transmit covariance matrix, while keeping the other fixed. Numerical results verify that FIMs can achieve higher MIMO capacity than traditional rigid arrays. In some cases, the MIMO channel capacity can be doubled by employing FIMs.
Abstract:A flexible intelligent metasurface (FIM) is composed of an array of low-cost radiating elements, each of which can independently radiate electromagnetic signals and flexibly adjust its position through a 3D surface-morphing process. In our system, an FIM is deployed at a base station (BS) that transmits to multiple single-antenna users. We formulate an optimization problem for minimizing the total downlink transmit power at the BS by jointly optimizing the transmit beamforming and the FIM's surface shape, subject to an individual signal-to-interference-plus-noise ratio (SINR) constraint for each user as well as to a constraint on the maximum morphing range of the FIM. To address this problem, an efficient alternating optimization method is proposed to iteratively update the FIM's surface shape and the transmit beamformer to gradually reduce the transmit power. Finally, our simulation results show that at a given data rate the FIM reduces the transmit power by about $3$ dB compared to conventional rigid 2D arrays.
Abstract:Intelligent surfaces represent a breakthrough technology capable of customizing the wireless channel cost-effectively. However, the existing works generally focus on planar wavefront, neglecting near-field spherical wavefront characteristics caused by large array aperture and high operation frequencies in the terahertz (THz). Additionally, the single-layer reconfigurable intelligent surface (RIS) lacks the signal processing ability to mitigate the computational complexity at the base station (BS). To address this issue, we introduce a novel stacked intelligent metasurfaces (SIM) comprised of an array of programmable metasurface layers. The SIM aims to substitute conventional digital baseband architecture to execute computing tasks with ultra-low processing delay, albeit with a reduced number of radio-frequency (RF) chains and low-resolution digital-to-analog converters. In this paper, we present a SIM-aided multiuser multiple-input single-output (MU-MISO) near-field system, where the SIM is integrated into the BS to perform beamfocusing in the wave domain and customize an end-to-end channel with minimized inter-user interference. Finally, the numerical results demonstrate that near-field communication achieves superior spatial gain over the far-field, and the SIM effectively suppresses inter-user interference as the wireless signals propagate through it.
Abstract:Rydberg atomic quantum receivers exhibit great potential in assisting classical wireless communications due to their outstanding advantages in detecting radio frequency signals. To realize this potential, we integrate a Rydberg atomic quantum receiver into a classical multi-user multiple-input multiple-output (MIMO) scheme to form a multi-user Rydberg atomic quantum MIMO (RAQ-MIMO) system for the uplink. To study this system, we first construct an equivalent baseband signal model, which facilitates convenient system design, signal processing and optimizations. We then study the ergodic achievable rates under both the maximum ratio combining (MRC) and zero-forcing (ZF) schemes by deriving their tight lower bounds. We next compare the ergodic achievable rates of the RAQ-MIMO and the conventional massive MIMO schemes by offering a closed-form expression for the difference of their ergodic achievable rates, which allows us to directly compare the two systems. Our results show that RAQ-MIMO allows the average transmit power of users to be $\sim 20$ dBm lower than that of the conventional massive MIMO. Viewed from a different perspective, an extra $\sim 7$ bits/s/Hz/user rate becomes achievable by ZF RAQ-MIMO, when equipping $50 \sim 500$ receive elements for receiving $1 \sim 100$ user signals at an enough transmit power (e.g., $\ge 20$ dBm).
Abstract:Quantum sensing technologies have experienced rapid progresses since entering the `second quantum revolution'. Among various candidates, schemes relying on Rydberg atoms exhibit compelling advantages for detecting radio frequency signals. Based on this, Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing. To harness the advantages and exploit the potential of RAQRs in wireless sensing, we investigate the realization of the direction of arrival (DOA) estimation by RAQRs. Specifically, we first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection and propose the corresponding signal model of this sensing system. Furthermore, we propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT relying on our model. The proposed algorithm solves the sensor gain mismatch problem, which is due to the presence of the RF local oscillator in the RAQ-ULA and cannot be well addressed by using the conventional ESPRIT. Lastly, we characterize our scheme through numerical simulations.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
Abstract:Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.