Abstract:Movable antennas (MAs) enhance flexibility in beamforming gain and interference suppression by adjusting position within certain areas of the transceivers. In this paper, we propose an MA-assisted integrated sensing and communication framework, wherein MAs are deployed for reconfiguring the channel array responses at both the receiver and transmitter of a base station. Then, we develop an optimization framework aimed at maximizing the sensing signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the receive beamforming vector, the transmit beamforming matrix, and the positions of MAs while meeting the minimum SINR requirement for each user. To address this nonconvex problem involving complex coupled variables, we devise an alternating optimization-based algorithm that incorporates techniques including the Charnes-Cooper transform, second-order Taylor expansion, and successive convex approximation (SCA). Specifically, the closed form of the received vector and the optimal transmit matrix can be first obtained in each iteration. Subsequently, the solutions for the positions of the transmit and receive MAs are obtained using the SCA method based on the second-order Taylor expansion. The simulation results show that the proposed scheme has significant advantages over the other baseline schemes. In particular, the proposed scheme has the ability to match the performance of the fixed position antenna scheme while utilizing fewer resources.
Abstract:This paper investigates a novel generative artificial intelligence (GAI) empowered multi-user semantic communication system called semantic feature multiple access (SFMA) for video transmission, which comprises a base station (BS) and paired users. The BS generates and combines semantic information of several frames simultaneously requested by paired users into a single signal. Users recover their frames from this combined signal and input the recovered frames into a GAI-based video frame interpolation model to generate the intermediate frame. To optimize transmission rates and temporal gaps between simultaneously transmitted frames, we formulate an optimization problem to maximize the system sum rate while minimizing temporal gaps. Since the standard signal-to-interference-plus-noise ratio (SINR) equation does not accurately capture the performance of our semantic communication system, we introduce a weight parameter into the SINR equation to better represent the system's performance. Due to its dependence on transmit power, we propose a three-step solution. First, we develop a user pairing algorithm that pairs two users with the highest preference value, a weighted combination of semantic transmission rate and temporal gap. Second, we optimize inter-group power allocation by formulating an optimization problem that allocates proper transmit power across all user groups to maximize system sum rates while satisfying each user's minimum rate requirement. Third, we address intra-group power allocation to enhance each user's performance. Simulation results demonstrate that our method improves transmission rates by up to 24.8%, 45.8%, and 66.1% compared to fixed-power non-orthogonal multiple access (F-NOMA), orthogonal joint source-channel coding (O-JSCC), and orthogonal frequency division multiple access (OFDMA), respectively.
Abstract:With the increasing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture. This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities. We commence with a retrospective analysis of AI and the evolution of large-scale AI models, underscoring their pivotal roles in shaping contemporary communication technologies. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The initial stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The subsequent stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, including digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services and support application scenarios like immersive communication and intelligent industrial robots. Specifically, we have defined the quality of AI service, which refers to the measurement framework system of AI services within the network. In addition to these developmental stages, we thoroughly examine the standardization processes pertinent to AI in network contexts, highlighting key milestones and ongoing efforts. Finally, we outline promising future research opportunities that could drive the evolution and refinement of AI and communication for 6G, positioning them as a cornerstone of next-generation communication infrastructure.
Abstract:Rydberg atom-based antennas exploit the quantum properties of highly excited Rydberg atoms, providing unique advantages over classical antennas, such as high sensitivity, broad frequency range, and compact size. Despite the increasing interests in their applications in antenna and communication engineering, two key properties, involving the lack of polarization multiplexing and isotropic reception without mutual coupling, remain unexplored in the analysis of Rydberg atom-based spatial multiplexing, i.e., multiple-input and multiple-output (MIMO), communications. Generally, the design considerations for any antenna, even for atomic ones, can be extracted to factors such as radiation patterns, efficiency, and polarization, allowing them to be seamlessly integrated into existing system models. In this letter, we extract the antenna properties from relevant quantum characteristics, enabling electromagnetic modeling and capacity analysis of Rydberg MIMO systems in both far-field and near-field scenarios. By employing ray-based method for far-field analysis and dyadic Green's function for near-field calculation, our results indicate that Rydberg atom-based antenna arrays offer specific advantages over classical dipole-type arrays in single-polarization MIMO communications.
Abstract:This paper introduces an integrated sensing, computing, and semantic communication (ISCSC) framework tailored for smart healthcare systems. The framework is evaluated in the context of smart healthcare, optimising the transmit beamforming matrix and semantic extraction ratio for improved data rates, sensing accuracy, and general data protection regulation (GDPR) compliance, while considering IoRT device computing capabilities. Semantic metrics such as semantic transmission rate and semantic secrecy rate are derived to evaluate data rate performance and GDPR risk, respectively, while the Cram\'er-Rao Bound (CRB) assesses sensing performance. Simulation results demonstrate the framework's effectiveness in ensuring reliable sensing, high data rates, and secure communication.
Abstract:Holographic multiple-input and multiple-output (MIMO) communications introduce innovative antenna array configurations, such as dense arrays and volumetric arrays, which offer notable advantages over conventional planar arrays with half-wavelength element spacing. However, accurately assessing the performance of these new holographic MIMO systems necessitates careful consideration of channel matrix normalization, as it is influenced by array gain, which, in turn, depends on the array topology. Traditional normalization methods may be insufficient for assessing these advanced array topologies, potentially resulting in misleading or inaccurate evaluations. In this study, we propose electromagnetic normalization approaches for the channel matrix that accommodate arbitrary array topologies, drawing on the array gains from analytical, physical, and full-wave methods. Additionally, we introduce a normalization method for near-field MIMO channels based on a rigorous dyadic Green's function approach, which accounts for potential losses of gain at near field. Finally, we perform capacity analyses under quasi-static, ergodic, and near-field conditions, through adopting the proposed normalization techniques. Our findings indicate that channel matrix normalization should reflect the realized gains of the antenna array in target directions. Failing to accurately normalize the channel matrix can result in errors when evaluating the performance limits and benefits of unconventional holographic array topologies, potentially compromising the optimal design of holographic MIMO systems.
Abstract:Accurate localization of mobile terminals is a pivotal aspect of integrated sensing and communication systems. Traditional fingerprint-based localization methods, which infer coordinates from channel information within pre-set rectangular areas, often face challenges due to the heterogeneous distribution of fingerprints inherent in non-line-of-sight (NLOS) scenarios, particularly within orthogonal frequency division multiplexing systems. To overcome this limitation, we develop a novel multi-sources information fusion learning framework referred to as the Autosync Multi-Domains NLOS Localization (AMDNLoc). Specifically, AMDNLoc employs a two-stage matched filter fused with a target tracking algorithm and iterative centroid-based clustering to automatically and irregularly segment NLOS regions, ensuring uniform distribution within channel state information across frequency, power, and time-delay domains. Additionally, the framework utilizes a segment-specific linear classifier array, coupled with deep residual network-based feature extraction and fusion, to establish the correlation function between fingerprint features and coordinates within these regions. Simulation results reveal that AMDNLoc achieves an impressive NLOS localization accuracy of 1.46 meters on typical wireless artificial intelligence research datasets and demonstrates significant improvements in interpretability, adaptability, and scalability.
Abstract:Hannan Limitation successfully links the directivity characteristics of 2D arrays with the aperture gain limit, providing the radiation efficiency upper limit for large 2D planar antenna arrays. This demonstrates the inevitable radiation efficiency degradation caused by mutual coupling effects between array elements. However, this limitation is derived based on the assumption of infinitely large 2D arrays, which means that it is not an accurate law for small-size arrays. In this paper, we extend this theory and propose an estimation formula for the radiation efficiency upper limit of finite-sized 2D arrays. Furthermore, we analyze a 3D array structure consisting of two parallel 2D arrays. Specifically, we provide evaluation formulas for the mutual coupling strengths for both infinite and finite size arrays and derive the fundamental efficiency limit of 3D arrays. Moreover, based on the established gain limit of antenna arrays with fixed aperture sizes, we derive the achievable gain limit of finite size 3D arrays. Besides the performance analyses, we also investigate the spatial radiation characteristics of the considered 3D array structure, offering a feasible region for 2D phase settings under a given energy attenuation threshold. Through simulations, we demonstrate the effectiveness of our proposed theories and gain advantages of 3D arrays for better spatial coverage under various scenarios.
Abstract:Holographic multiple-input and multiple-output (HMIMO) is a promising technology with the potential to achieve high energy and spectral efficiencies, enhance system capacity and diversity, etc. In this work, we address the challenge of HMIMO near field (NF) channel estimation, which is complicated by the intricate model introduced by the dyadic Green's function. Despite its complexity, the channel model is governed by a limited set of parameters. This makes parametric channel estimation highly attractive, offering substantial performance enhancements and enabling the extraction of valuable sensing parameters, such as user locations, which are particularly beneficial in mobile networks. However, the relationship between these parameters and channel gains is nonlinear and compounded by integration, making the estimation a formidable task. To tackle this problem, we propose a novel neural network (NN) assisted hybrid method. With the assistance of NNs, we first develop a novel hybrid channel model with a significantly simplified expression compared to the original one, thereby enabling parametric channel estimation. Using the readily available training data derived from the original channel model, the NNs in the hybrid channel model can be effectively trained offline. Then, building upon this hybrid channel model, we formulate the parametric channel estimation problem with a probabilistic framework and design a factor graph representation for Bayesian estimation. Leveraging the factor graph representation and unitary approximate message passing (UAMP), we develop an effective message passing-based Bayesian channel estimation algorithm. Extensive simulations demonstrate the superior performance of the proposed method.
Abstract:In this paper, we investigate the question of which technology, fluid antenna systems (FAS) or active reconfigurable intelligent surfaces (ARIS), plays a more crucial role in FAS-ARIS wireless communication systems. To address this, we develop a comprehensive system model and explore the problem from an optimization perspective. We introduce an alternating optimization (AO) algorithm incorporating majorization-minimization (MM), successive convex approximation (SCA), and sequential rank-one constraint relaxation (SRCR) to tackle the non-convex challenges inherent in these systems. Specifically, for the transmit beamforming of the BS optimization, we propose a closed-form rank-one solution with low-complexity. For the optimization the positions of fluid antennas (FAs) of the BS, the Taylor expansions and MM algorithm are utilized to construct the effective lower bounds and upper bounds of the objective function and constraints, transforming the non-convex optimization problem into a convex one. Furthermore, we use the SCA and SRCR to optimize the reflection coefficient matrix of the ARIS and effectively solve the rank-one constraint. Simulation results reveal that the relative importance of FAS and ARIS varies depending on the scenario: FAS proves more critical in simpler models with fewer reflecting elements or limited transmission paths, while ARIS becomes more significant in complex scenarios with a higher number of reflecting elements or transmission paths. Ultimately, the integration of both FAS and ARIS creates a win-win scenario, resulting in a more robust and efficient communication system. This study underscores the importance of combining FAS with ARIS, as their complementary use provides the most substantial benefits across different communication environments.