Abstract:This work develops a physically consistent model for stacked intelligent metasurfaces (SIM) using multiport network theory and transfer scattering parameters (T-parameters). Unlike the scattering parameters (S-parameters) model, which is highly complex and non-tractable due to its nested nature and excessive number of matrix inversions, the developed T-parameters model is less complex and more tractable due to its explicit and compact nature. This work further derives the constraints of T-parameters for a lossless reciprocal reconfigurable intelligent surfaces (RISs). A gradient descent algorithm (GDA) is proposed to maximize the sum rate in SIM-aided multiuser scenarios, and the results show that accounting for mutual coupling and feedback between consecutive layers can improve the sum rate. In addition, increasing the number of SIM layers with a fixed total number of elements degrades the sum rate when our exact and simplified channel models are used, unlike the simplified channel model with the Rayleigh-Sommerfeld diffraction coefficients which improves the sum rate.
Abstract:Despite the widespread adoption of vision sensors in edge applications, such as surveillance, the transmission of video data consumes substantial spectrum resources. Semantic communication (SC) offers a solution by extracting and compressing information at the semantic level, preserving the accuracy and relevance of transmitted data while significantly reducing the volume of transmitted information. However, traditional SC methods face inefficiencies due to the repeated transmission of static frames in edge videos, exacerbated by the absence of sensing capabilities, which results in spectrum inefficiency. To address this challenge, we propose a SC with computer vision sensing (SCCVS) framework for edge video transmission. The framework first introduces a compression ratio (CR) adaptive SC (CRSC) model, capable of adjusting CR based on whether the frames are static or dynamic, effectively conserving spectrum resources. Additionally, we implement an object detection and semantic segmentation models-enabled sensing (OSMS) scheme, which intelligently senses the changes in the scene and assesses the significance of each frame through in-context analysis. Hence, The OSMS scheme provides CR prompts to the CRSC model based on real-time sensing results. Moreover, both CRSC and OSMS are designed as lightweight models, ensuring compatibility with resource-constrained sensors commonly used in practical edge applications. Experimental simulations validate the effectiveness of the proposed SCCVS framework, demonstrating its ability to enhance transmission efficiency without sacrificing critical semantic information.
Abstract:This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
Abstract:We are in a transformative era, and advances in Artificial Intelligence (AI), especially the foundational models, are constantly in the news. AI has been an integral part of many applications that rely on automation for service delivery, and one of them is mission-critical public safety applications. The problem with AI-oriented mission-critical applications is the humanin-the-loop system and the lack of adaptability to dynamic conditions while maintaining situational awareness. Agentic AI (AAI) has gained a lot of attention recently due to its ability to analyze textual data through a contextual lens while quickly adapting to conditions. In this context, this paper proposes an AAI framework for mission-critical applications. We propose a novel framework with a multi-layer architecture to realize the AAI. We also present a detailed implementation of AAI layer that bridges the gap between network infrastructure and missioncritical applications. Our preliminary analysis shows that the AAI reduces initial response time by 5.6 minutes on average, while alert generation time is reduced by 15.6 seconds on average and resource allocation is improved by up to 13.4%. We also show that the AAI methods improve the number of concurrent operations by 40, which reduces the recovery time by up to 5.2 minutes. Finally, we highlight some of the issues and challenges that need to be considered when implementing AAI frameworks.
Abstract:Advancements in emerging technologies, e.g., reconfigurable intelligent surfaces and holographic MIMO (HMIMO), facilitate unprecedented manipulation of electromagnetic (EM) waves, significantly enhancing the performance of wireless communication systems. To accurately characterize the achievable performance limits of these systems, it is crucial to develop a universal EM-compliant channel model. This paper addresses this necessity by proposing a comprehensive EM channel model tailored for realistic multi-path environments, accounting for the combined effects of antenna array configurations and propagation conditions in HMIMO communications. Both polarization phenomena and spatial correlation are incorporated into this probabilistic channel model. Additionally, physical constraints of antenna configurations, such as mutual coupling effects and energy consumption, are integrated into the channel modeling framework. Simulation results validate the effectiveness of the proposed probabilistic channel model, indicating that traditional Rician and Rayleigh fading models cannot accurately depict the channel characteristics and underestimate the channel capacity. More importantly, the proposed channel model outperforms free-space Green's functions in accurately depicting both near-field gain and multi-path effects in radiative near-field regions. These gains are much more evident in tri-polarized systems, highlighting the necessity of polarization interference elimination techniques. Moreover, the theoretical analysis accurately verifies that capacity decreases with expanding communication regions of two-user communications.
Abstract:This paper investigates a range of cutting-edge technologies and architectural innovations aimed at simplifying network operations, reducing operational expenditure (OpEx), and enabling the deployment of new service models. The focus is on (i) Proposing novel, more efficient 6G architectures, with both Control and User planes enabling the seamless expansion of services, while addressing long-term 6G network evolution. (ii) Exploring advanced techniques for constrained artificial intelligence (AI) operations, particularly the design of AI agents for real-time learning, optimizing energy consumption, and the allocation of computational resources. (iii) Identifying technologies and architectures that support the orchestration of backend services using serverless computing models across multiple domains, particularly for vertical industries. (iv) Introducing optically-based, ultra-high-speed, low-latency network architectures, with fast optical switching and real-time control, replacing conventional electronic switching to reduce power consumption by an order of magnitude.
Abstract:Terahertz (THz) communication combined with ultra-massive multiple-input multiple-output (UM-MIMO) technology is promising for 6G wireless systems, where fast and precise direction-of-arrival (DOA) estimation is crucial for effective beamforming. However, finding DOAs in THz UM-MIMO systems faces significant challenges: while reducing hardware complexity, the hybrid analog-digital (HAD) architecture introduces inherent difficulties in spatial information acquisition the large-scale antenna array causes significant deviations in eigenvalue decomposition results; and conventional two-dimensional DOA estimation methods incur prohibitively high computational overhead, hindering fast and accurate realization. To address these challenges, we propose a hybrid dynamic subarray (HDS) architecture that strategically divides antenna elements into subarrays, ensuring phase differences between subarrays correlate exclusively with single-dimensional DOAs. Leveraging this architectural innovation, we develop two efficient algorithms for DOA estimation: a reduced-dimension MUSIC (RD-MUSIC) algorithm that enables fast processing by correcting large-scale array estimation bias, and an improved version that further accelerates estimation by exploiting THz channel sparsity to obtain initial closed-form solutions through specialized two-RF-chain configuration. Furthermore, we develop a theoretical framework through Cram\'{e}r-Rao lower bound analysis, providing fundamental insights for different HDS configurations. Extensive simulations demonstrate that our solution achieves both superior estimation accuracy and computational efficiency, making it particularly suitable for practical THz UM-MIMO systems.
Abstract:Direction-of-arrival (DOA) estimation for incoherently distributed (ID) sources is essential in multipath wireless communication scenarios, yet it remains challenging due to the combined effects of angular spread and gain-phase uncertainties in antenna arrays. This paper presents a two-stage sparse DOA estimation framework, transitioning from partial calibration to full potential, under the generalized array manifold (GAM) framework. In the first stage, coarse DOA estimates are obtained by exploiting the output from a subset of partly-calibrated arrays (PCAs). In the second stage, these estimates are utilized to determine and compensate for gain-phase uncertainties across all array elements. Then a sparse total least-squares optimization problem is formulated and solved via alternating descent to refine the DOA estimates. Simulation results demonstrate that the proposed method attained improved estimation accuracy compared to existing approaches, while maintaining robustness against both noise and angular spread effects in practical multipath environments.
Abstract:Fluid antenna systems (FAS) enable dynamic antenna positioning, offering new opportunities to enhance integrated sensing and communication (ISAC) performance. However, existing studies primarily focus on communication enhancement or single-target sensing, leaving multi-target scenarios underexplored. Additionally, the joint optimization of beamforming and antenna positions poses a highly non-convex problem, with traditional methods becoming impractical as the number of fluid antennas increases. To address these challenges, this letter proposes a block coordinate descent (BCD) framework integrated with a deep reinforcement learning (DRL)-based approach for intelligent antenna positioning. By leveraging the deep deterministic policy gradient (DDPG) algorithm, the proposed framework efficiently balances sensing and communication performance. Simulation results demonstrate the scalability and effectiveness of the proposed approach.
Abstract:Fluid antenna system (FAS) as a new version of reconfigurable antenna technologies promoting shape and position flexibility, has emerged as an exciting and possibly transformative technology for wireless communications systems. FAS represents any software-controlled fluidic, conductive or dielectric structure that can dynamically alter antenna's shape and position to change the gain, the radiation pattern, the operating frequency, and other critical radiation characteristics. With its capability, it is highly anticipated that FAS can contribute greatly to the upcoming sixth generation (6G) wireless networks. This article substantiates this thought by addressing four major questions: 1) Is FAS crucial to 6G? 2) How to characterize FAS? 3) What are the applications of FAS? 4) What are the relevant challenges and future research directions? In particular, five promising research directions that underscore the potential of FAS are discussed. We conclude this article by showcasing the impressive performance of FAS.