Abstract:Federated learning (FL) involves several clients that share with a fusion center (FC), the model each client has trained with its own data. Conventional FL, which can be interpreted as an estimation or distortion-based approach, ignores the final use of model information (MI) by the FC and the other clients. In this paper, we introduce a novel FL framework in which the FC uses an aggregate version of the MI to make decisions that affect the client's utility functions. Clients cannot choose the decisions and can only use the MI reported to the FC to maximize their utility. Depending on the alignment between the client and FC utilities, the client may have an individual interest in adding strategic noise to the model. This general framework is stated and specialized to the case of clustering, in which noisy cluster representative information is reported. This is applied to the problem of power consumption scheduling. In this context, utility non-alignment occurs, for instance, when the client wants to consume when the price of electricity is low, whereas the FC wants the consumption to occur when the total power is the lowest. This is illustrated with aggregated real data from Ausgrid \cite{ausgrid}. Our numerical analysis clearly shows that the client can increase his utility by adding noise to the model reported to the FC. Corresponding results and source codes can be downloaded from \cite{source-code}.
Abstract:The development of wireless sensing technologies, using signals such as Wi-Fi, infrared, and RF to gather environmental data, has significantly advanced within Internet of Things (IoT) systems. Among these, Radio Frequency (RF) sensing stands out for its cost-effective and non-intrusive monitoring of human activities and environmental changes. However, traditional RF sensing methods face significant challenges, including noise, interference, incomplete data, and high deployment costs, which limit their effectiveness and scalability. This paper investigates the potential of Generative AI (GenAI) to overcome these limitations within the IoT ecosystem. We provide a comprehensive review of state-of-the-art GenAI techniques, focusing on their application to RF sensing problems. By generating high-quality synthetic data, enhancing signal quality, and integrating multi-modal data, GenAI offers robust solutions for RF environment reconstruction, localization, and imaging. Additionally, GenAI's ability to generalize enables IoT devices to adapt to new environments and unseen tasks, improving their efficiency and performance. The main contributions of this article include a detailed analysis of the challenges in RF sensing, the presentation of innovative GenAI-based solutions, and the proposal of a unified framework for diverse RF sensing tasks. Through case studies, we demonstrate the effectiveness of integrating GenAI models, leading to advanced, scalable, and intelligent IoT systems.
Abstract:While traditional optimization and scheduling schemes are designed to meet fixed, predefined system requirements, future systems are moving toward user-driven approaches and personalized services, aiming to achieve high quality-of-experience (QoE) and flexibility. This challenge is particularly pronounced in wireless and digitalized energy networks, where users' requirements have largely not been taken into consideration due to the lack of a common language between users and machines. The emergence of powerful large language models (LLMs) marks a radical departure from traditional system-centric methods into more advanced user-centric approaches by providing a natural communication interface between users and devices. In this paper, for the first time, we introduce a novel architecture for resource scheduling problems by constructing three LLM agents to convert an arbitrary user's voice request (VRQ) into a resource allocation vector. Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an LLM OP solving agent. To evaluate system performance, we construct a database of typical VRQs in the context of electric vehicle (EV) charging. As a proof of concept, we primarily use Llama 3 8B. Through testing with different prompt engineering scenarios, the obtained results demonstrate the efficiency of the proposed architecture. The conducted performance analysis allows key insights to be extracted. For instance, having a larger set of candidate OPs to model the real-world problem might degrade the final performance because of a higher recognition/OP classification noise level. All results and codes are open source.
Abstract:Generative artificial intelligence (GenAI) and communication networks are expected to have groundbreaking synergies in 6G. Connecting GenAI agents over a wireless network can potentially unleash the power of collective intelligence and pave the way for artificial general intelligence (AGI). However, current wireless networks are designed as a "data pipe" and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (high-level concepts or abstracts) to accomplish arbitrary tasks. We first provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantic concepts from multi-modal raw data, build a knowledgebase representing their semantic relations, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, an agent can learn fast from other agents' experience for making better decisions with efficient communications. Furthermore, we conduct two case studies where in wireless device query, we show that extracting and transferring knowledge can improve query accuracy with reduced communication; and in wireless power control, we show that distributed agents can improve decisions via collaborative reasoning. Finally, we address that developing a hierarchical semantic level Telecom world model is a key path towards network of collective intelligence.
Abstract:Estimating the channel state is known to be an important problem in wireless networks. To this end, it matters to exploit all the available information to improve channel estimation accuracy as much as possible. It turns out that the problem of exploiting the information associated with the receive power feedback (e.g., the received signal strength indicator -RSSI-) has not been identified and solved; in this setup, the transmitter is assumed to receive feedback from all the receivers in presence. As shown in this paper, to solve this problem, classical estimation tools can be used. Using the corresponding MMSE is shown to be always beneficial, whereas the relevance of using the MAP estimator would depend on the operating SNR.
Abstract:Internet of Things (IoT) devices will play an important role in emerging applications, since their sensing, actuation, processing, and wireless communication capabilities stimulate data collection, transmission and decision processes of smart applications. However, new challenges arise from the widespread popularity of IoT devices, including the need for processing more complicated data structures and high dimensional data/signals. The unprecedented volume, heterogeneity, and velocity of IoT data calls for a communication paradigm shift from a search for accuracy or fidelity to semantics extraction and goal accomplishment. In this paper, we provide a partial but insightful overview of recent research efforts in this newly formed area of goal-oriented (GO) and semantic communications, focusing on the problem of GO data compression for IoT applications.
Abstract:In this paper, the situation in which a receiver has to execute a task from a quantized version of the information source of interest is considered. The task is modeled by the minimization problem of a general goal function $f(x;g)$ for which the decision $x$ has to be taken from a quantized version of the parameters $g$. This problem is relevant in many applications e.g., for radio resource allocation (RA), high spectral efficiency communications, controlled systems, or data clustering in the smart grid. By resorting to high resolution (HR) analysis, it is shown how to design a quantizer that minimizes the gap between the minimum of $f$ (which would be reached by knowing $g$ perfectly) and what is effectively reached with a quantized $g$. The conducted formal analysis both provides quantization strategies in the HR regime and insights for the general regime and allows a practical algorithm to be designed. The analysis also allows one to provide some elements to the new and fundamental problem of the relationship between the goal function regularity properties and the hardness to quantize its parameters. The derived results are discussed and supported by a rich numerical performance analysis in which known RA goal functions are studied and allows one to exhibit very significant improvements by tailoring the quantization operation to the final task.
Abstract:Data clustering is an instrumental tool in the area of energy resource management. One problem with conventional clustering is that it does not take the final use of the clustered data into account, which may lead to a very suboptimal use of energy or computational resources. When clustered data are used by a decision-making entity, it turns out that significant gains can be obtained by tailoring the clustering scheme to the final task performed by the decision-making entity. The key to having good final performance is to automatically extract the important attributes of the data space that are inherently relevant to the subsequent decision-making entity, and partition the data space based on these attributes instead of partitioning the data space based on predefined conventional metrics. For this purpose, we formulate the framework of decision-making oriented clustering and propose an algorithm providing a decision-based partition of the data space and good representative decisions. By applying this novel framework and algorithm to a typical problem of real-time pricing and that of power consumption scheduling, we obtain several insightful analytical results such as the expression of the best representative price profiles for real-time pricing and a very significant reduction in terms of required clusters to perform power consumption scheduling as shown by our simulations.
Abstract:Assuming that the number of possible decisions for a transmitter (e.g., the number of possible beamforming vectors) has to be finite and is given, this paper investigates for the first time the problem of determining the best decision set when energy-efficiency maximization is pursued. We propose a framework to find a good (finite) decision set which induces a minimal performance loss w.r.t. to the continuous case. We exploit this framework for a scenario of energy-efficient MIMO communications in which transmit power and beamforming vectors have to be adapted jointly to the channel given under finite-rate feedback. To determine a good decision set we propose an algorithm which combines the approach of Invasive Weed Optimization (IWO) and an Evolutionary Algorithm (EA). We provide a numerical analysis which illustrates the benefits of our point of view. In particular, given a performance loss level, the feedback rate can by reduced by 2 when the transmit decision set has been designed properly by using our algorithm. The impact on energy-efficiency is also seen to be significant.
Abstract:In this paper, we introduce the problem of decision-oriented communications, that is, the goal of the source is to send the right amount of information in order for the intended destination to execute a task. More specifically, we restrict our attention to how the source should quantize information so that the destination can maximize a utility function which represents the task to be executed only knowing the quantized information. For example, for utility functions under the form $u\left(\boldsymbol{x};\ \boldsymbol{g}\right)$, $\boldsymbol{x}$ might represent a decision in terms of using some radio resources and $\boldsymbol{g}$ the system state which is only observed through its quantized version $Q(\boldsymbol{g})$. Both in the case where the utility function is known and the case where it is only observed through its realizations, we provide solutions to determine such a quantizer. We show how this approach applies to energy-efficient power allocation. In particular, it is seen that quantizing the state very roughly is perfectly suited to sum-rate-type function maximization, whereas energy-efficiency metrics are more sensitive to imperfections.