Abstract:The development of wireless sensing technologies, using signals such as Wi-Fi, infrared, and RF to gather environmental data, has significantly advanced within Internet of Things (IoT) systems. Among these, Radio Frequency (RF) sensing stands out for its cost-effective and non-intrusive monitoring of human activities and environmental changes. However, traditional RF sensing methods face significant challenges, including noise, interference, incomplete data, and high deployment costs, which limit their effectiveness and scalability. This paper investigates the potential of Generative AI (GenAI) to overcome these limitations within the IoT ecosystem. We provide a comprehensive review of state-of-the-art GenAI techniques, focusing on their application to RF sensing problems. By generating high-quality synthetic data, enhancing signal quality, and integrating multi-modal data, GenAI offers robust solutions for RF environment reconstruction, localization, and imaging. Additionally, GenAI's ability to generalize enables IoT devices to adapt to new environments and unseen tasks, improving their efficiency and performance. The main contributions of this article include a detailed analysis of the challenges in RF sensing, the presentation of innovative GenAI-based solutions, and the proposal of a unified framework for diverse RF sensing tasks. Through case studies, we demonstrate the effectiveness of integrating GenAI models, leading to advanced, scalable, and intelligent IoT systems.
Abstract:We address the problem of efficiently compressing video for conferencing-type applications. We build on recent approaches based on image animation, which can achieve good reconstruction quality at very low bitrate by representing face motions with a compact set of sparse keypoints. However, these methods encode video in a frame-by-frame fashion, i.e. each frame is reconstructed from a reference frame, which limits the reconstruction quality when the bandwidth is larger. Instead, we propose a predictive coding scheme which uses image animation as a predictor, and codes the residual with respect to the actual target frame. The residuals can be in turn coded in a predictive manner, thus removing efficiently temporal dependencies. Our experiments indicate a significant bitrate gain, in excess of 70% compared to the HEVC video standard and over 30% compared to VVC, on a datasetof talking-head videos
Abstract:With the increased interest in immersive experiences, point cloud came to birth and was widely adopted as the first choice to represent 3D media. Besides several distortions that could affect the 3D content spanning from acquisition to rendering, efficient transmission of such volumetric content over traditional communication systems stands at the expense of the delivered perceptual quality. To estimate the magnitude of such degradation, employing quality metrics became an inevitable solution. In this work, we propose a novel deep-based no-reference quality metric that operates directly on the whole point cloud without requiring extensive pre-processing, enabling real-time evaluation over both transmission and rendering levels. To do so, we use a novel model design consisting primarily of cross and self-attention layers, in order to learn the best set of local semantic affinities while keeping the best combination of geometry and color information in multiple levels from basic features extraction to deep representation modeling.
Abstract:Point clouds are now commonly used to represent 3D scenes in virtual world, in addition to 3D meshes. Their ease of capture enable various applications on mobile devices, such as smartphones or other microcontrollers. Point cloud compression is now at an advanced level and being standardized. Nevertheless, quality assessment databases, which is needed to develop better objective quality metrics, are still limited. In this work, we create a broad quality assessment database for static point clouds, mainly for telepresence scenario. For the sake of completeness, the created database is analyzed using the mean opinion scores, and it is used to benchmark several state-of-the-art quality estimators. The generated database is named Broad quality Assessment of Static point clouds In Compression Scenario (BASICS). Currently, the BASICS database is used as part of the ICIP 2023 Grand Challenge on Point Cloud Quality Assessment, and therefore only a part of the database has been made publicly available at the challenge website. The rest of the database will be made available once the challenge is over.
Abstract:Following the advent of immersive technologies and the increasing interest in representing interactive geometrical format, 3D Point Clouds (PC) have emerged as a promising solution and effective means to display 3D visual information. In addition to other challenges in immersive applications, objective and subjective quality assessments of compressed 3D content remain open problems and an area of research interest. Yet most of the efforts in the research area ignore the local geometrical structures between points representation. In this paper, we overcome this limitation by introducing a novel and efficient objective metric for Point Clouds Quality Assessment, by learning local intrinsic dependencies using Graph Neural Network (GNN). To evaluate the performance of our method, two well-known datasets have been used. The results demonstrate the effectiveness and reliability of our solution compared to state-of-the-art metrics.
Abstract:Deep generative models, and particularly facial animation schemes, can be used in video conferencing applications to efficiently compress a video through a sparse set of keypoints, without the need to transmit dense motion vectors. While these schemes bring significant coding gains over conventional video codecs at low bitrates, their performance saturates quickly when the available bandwidth increases. In this paper, we propose a layered, hybrid coding scheme to overcome this limitation. Specifically, we extend a codec based on facial animation by adding an auxiliary stream consisting of a very low bitrate version of the video, obtained through a conventional video codec (e.g., HEVC). The animated and auxiliary videos are combined through a novel fusion module. Our results show consistent average BD-Rate gains in excess of -30% on a large dataset of video conferencing sequences, extending the operational range of bitrates of a facial animation codec alone
Abstract:This paper proposes a lossless point cloud (PC) geometry compression method that uses neural networks to estimate the probability distribution of voxel occupancy. First, to take into account the PC sparsity, our method adaptively partitions a point cloud into multiple voxel block sizes. This partitioning is signalled via an octree. Second, we employ a deep auto-regressive generative model to estimate the occupancy probability of each voxel given the previously encoded ones. We then employ the estimated probabilities to code efficiently a block using a context-based arithmetic coder. Our context has variable size and can expand beyond the current block to learn more accurate probabilities. We also consider using data augmentation techniques to increase the generalization capability of the learned probability models, in particular in the presence of noise and lower-density point clouds. Experimental evaluation, performed on a variety of point clouds from four different datasets and with diverse characteristics, demonstrates that our method reduces significantly (by up to 30%) the rate for lossless coding compared to the state-of-the-art MPEG codec.
Abstract:We propose a practical deep generative approach for lossless point cloud geometry compression, called MSVoxelDNN, and show that it significantly reduces the rate compared to the MPEG G-PCC codec. Our previous work based on autoregressive models (VoxelDNN) has a fast training phase, however, inference is slow as the occupancy probabilities are predicted sequentially, voxel by voxel. In this work, we employ a multiscale architecture which models voxel occupancy in coarse-to-fine order. At each scale, MSVoxelDNN divides voxels into eight conditionally independent groups, thus requiring a single network evaluation per group instead of one per voxel. We evaluate the performance of MSVoxelDNN on a set of point clouds from Microsoft Voxelized Upper Bodies (MVUB) and MPEG, showing that the current method speeds up encoding/decoding times significantly compared to the previous VoxelDNN, while having average rate saving over G-PCC of 17.5%. The implementation is available at https://github.com/Weafre/MSVoxelDNN.
Abstract:Point clouds are essential for storage and transmission of 3D content. As they can entail significant volumes of data, point cloud compression is crucial for practical usage. Recently, point cloud geometry compression approaches based on deep neural networks have been explored. In this paper, we evaluate the ability to predict perceptual quality of typical voxel-based loss functions employed to train these networks. We find that the commonly used focal loss and weighted binary cross entropy are poorly correlated with human perception. We thus propose a perceptual loss function for 3D point clouds which outperforms existing loss functions on the ICIP2020 subjective dataset. In addition, we propose a novel truncated distance field voxel grid representation and find that it leads to sparser latent spaces and loss functions that are more correlated with perceived visual quality compared to a binary representation. The source code is available at https://github.com/mauriceqch/2021_pc_perceptual_loss.
Abstract:In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 80% compared to HEVC.