Abstract:This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.
Abstract:In this paper, we propose a novel Multi-granularity Temporal Trajectory Factorization framework for generative human video compression, which holds great potential for bandwidth-constrained human-centric video communication. In particular, the proposed motion factorization strategy can facilitate to implicitly characterize the high-dimensional visual signal into compact motion vectors for representation compactness and further transform these vectors into a fine-grained field for motion expressibility. As such, the coded bit-stream can be entailed with enough visual motion information at the lowest representation cost. Meanwhile, a resolution-expandable generative module is developed with enhanced background stability, such that the proposed framework can be optimized towards higher reconstruction robustness and more flexible resolution adaptation. Experimental results show that proposed method outperforms latest generative models and the state-of-the-art video coding standard Versatile Video Coding (VVC) on both talking-face videos and moving-body videos in terms of both objective and subjective quality. The project page can be found at https://github.com/xyzysz/Extreme-Human-Video-Compression-with-MTTF.
Abstract:This paper proposes to learn generative priors from the motion patterns instead of video contents for generative video compression. The priors are derived from small motion dynamics in common scenes such as swinging trees in the wind and floating boat on the sea. Utilizing such compact motion priors, a novel generative scene dynamics compression framework is built to realize ultra-low bit-rate communication and high-quality reconstruction for diverse scene contents. At the encoder side, motion priors are characterized into compact representations in a dense-to-sparse manner. At the decoder side, the decoded motion priors serve as the trajectory hints for scene dynamics reconstruction via a diffusion-based flow-driven generator. The experimental results illustrate that the proposed method can achieve superior rate-distortion performance and outperform the state-of-the-art conventional video codec Versatile Video Coding (VVC) on scene dynamics sequences. The project page can be found at https://github.com/xyzysz/GNVDC.
Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.
Abstract:Artificial Intelligence Generated Content (AIGC) is leading a new technical revolution for the acquisition of digital content and impelling the progress of visual compression towards competitive performance gains and diverse functionalities over traditional codecs. This paper provides a thorough review on the recent advances of generative visual compression, illustrating great potentials and promising applications in ultra-low bitrate communication, user-specified reconstruction/filtering, and intelligent machine analysis. In particular, we review the visual data compression methodologies with deep generative models, and summarize how compact representation and high-fidelity reconstruction could be actualized via generative techniques. In addition, we generalize related generative compression technologies for machine vision and intelligent analytics. Finally, we discuss the fundamental challenges on generative visual compression techniques and envision their future research directions.
Abstract:Generative Face Video Coding (GFVC) techniques can exploit the compact representation of facial priors and the strong inference capability of deep generative models, achieving high-quality face video communication in ultra-low bandwidth scenarios. This paper conducts a comprehensive survey on the recent advances of the GFVC techniques and standardization efforts, which could be applicable to ultra low bitrate communication, user-specified animation/filtering and metaverse-related functionalities. In particular, we generalize GFVC systems within one coding framework and summarize different GFVC algorithms with their corresponding visual representations. Moreover, we review the GFVC standardization activities that are specified with supplemental enhancement information messages. Finally, we discuss fundamental challenges and broad applications on GFVC techniques and their standardization potentials, as well as envision their future trends. The project page can be found at https://github.com/Berlin0610/Awesome-Generative-Face-Video-Coding.
Abstract:Recent years have witnessed an exponential increase in the demand for face video compression, and the success of artificial intelligence has expanded the boundaries beyond traditional hybrid video coding. Generative coding approaches have been identified as promising alternatives with reasonable perceptual rate-distortion trade-offs, leveraging the statistical priors of face videos. However, the great diversity of distortion types in spatial and temporal domains, ranging from the traditional hybrid coding frameworks to generative models, present grand challenges in compressed face video quality assessment (VQA). In this paper, we introduce the large-scale Compressed Face Video Quality Assessment (CFVQA) database, which is the first attempt to systematically understand the perceptual quality and diversified compression distortions in face videos. The database contains 3,240 compressed face video clips in multiple compression levels, which are derived from 135 source videos with diversified content using six representative video codecs, including two traditional methods based on hybrid coding frameworks, two end-to-end methods, and two generative methods. In addition, a FAce VideO IntegeRity (FAVOR) index for face video compression was developed to measure the perceptual quality, considering the distinct content characteristics and temporal priors of the face videos. Experimental results exhibit its superior performance on the proposed CFVQA dataset. The benchmark is now made publicly available at: https://github.com/Yixuan423/Compressed-Face-Videos-Quality-Assessment.
Abstract:In this paper, we propose a novel framework for Interactive Face Video Coding (IFVC), which allows humans to interact with the intrinsic visual representations instead of the signals. The proposed solution enjoys several distinct advantages, including ultra-compact representation, low delay interaction, and vivid expression and headpose animation. In particular, we propose the Internal Dimension Increase (IDI) based representation, greatly enhancing the fidelity and flexibility in rendering the appearance while maintaining reasonable representation cost. By leveraging strong statistical regularities, the visual signals can be effectively projected into controllable semantics in the three dimensional space (e.g., mouth motion, eye blinking, head rotation and head translation), which are compressed and transmitted. The editable bitstream, which naturally supports the interactivity at the semantic level, can synthesize the face frames via the strong inference ability of the deep generative model. Experimental results have demonstrated the performance superiority and application prospects of our proposed IFVC scheme. In particular, the proposed scheme not only outperforms the state-of-the-art video coding standard Versatile Video Coding (VVC) and the latest generative compression schemes in terms of rate-distortion performance for face videos, but also enables the interactive coding without introducing additional manipulation processes. Furthermore, the proposed framework is expected to shed lights on the future design of the digital human communication in the metaverse.
Abstract:Blind modulation classification is an important step to implement cognitive radio networks. The multiple-input multiple-output (MIMO) technique is widely used in military and civil communication systems. Due to the lack of prior information about channel parameters and the overlapping of signals in the MIMO systems, the traditional likelihood-based and feature-based approaches cannot be applied in these scenarios directly. Hence, in this paper, to resolve the problem of blind modulation classification in MIMO systems, the time-frequency analysis method based on the windowed short-time Fourier transform is used to analyse the time-frequency characteristics of time-domain modulated signals. Then the extracted time-frequency characteristics are converted into RGB spectrogram images, and the convolutional neural network based on transfer learning is applied to classify the modulation types according to the RGB spectrogram images. Finally, a decision fusion module is used to fuse the classification results of all the receive antennas. Through simulations, we analyse the classification performance at different signal-to-noise ratios (SNRs), the results indicate that, for the single-input single-output (SISO) network, our proposed scheme can achieve 92.37% and 99.12% average classification accuracy at SNRs of -4 dB and 10 dB, respectively. For the MIMO network, our scheme achieves 80.42% and 87.92% average classification accuracy at -4 dB and 10 dB, respectively. This outperforms the existing classification methods based on baseband signals.
Abstract:In recent years, image forensics has attracted more and more attention, and many forensic methods have been proposed for identifying image processing operations. Up to now, most existing methods are based on hand crafted features, and just one specific operation is considered in their methods. In many forensic scenarios, however, multiple classification for various image processing operations is more practical. Besides, it is difficult to obtain effective features by hand for some image processing operations. In this paper, therefore, we propose a new convolutional neural network (CNN) based method to adaptively learn discriminative features for identifying typical image processing operations. We carefully design the high pass filter bank to get the image residuals of the input image, the channel expansion layer to mix up the resulting residuals, the pooling layers, and the activation functions employed in our method. The extensive results show that the proposed method can outperform the currently best method based on hand crafted features and three related methods based on CNN for image steganalysis and/or forensics, achieving the state-of-the-art results. Furthermore, we provide more supplementary results to show the rationality and robustness of the proposed model.