Abstract:This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.
Abstract:To fill the gap of traditional GS compression method, in this paper, we first propose a simple and effective GS data compression anchor called Graph-based GS Compression (GGSC). GGSC is inspired by graph signal processing theory and uses two branches to compress the primitive center and attributes. We split the whole GS sample via KDTree and clip the high-frequency components after the graph Fourier transform. Followed by quantization, G-PCC and adaptive arithmetic coding are used to compress the primitive center and attribute residual matrix to generate the bitrate file. GGSS is the first work to explore traditional GS compression, with advantages that can reveal the GS distortion characteristics corresponding to typical compression operation, such as high-frequency clipping and quantization. Second, based on GGSC, we create a GS Quality Assessment dataset (GSQA) with 120 samples. A subjective experiment is conducted in a laboratory environment to collect subjective scores after rendering GS into Processed Video Sequences (PVS). We analyze the characteristics of different GS distortions based on Mean Opinion Scores (MOS), demonstrating the sensitivity of different attributes distortion to visual quality. The GGSC code and the dataset, including GS samples, MOS, and PVS, are made publicly available at https://github.com/Qi-Yangsjtu/GGSC.
Abstract:In recent years, Neural Radiance Fields (NeRF) have demonstrated significant advantages in representing and synthesizing 3D scenes. Explicit NeRF models facilitate the practical NeRF applications with faster rendering speed, and also attract considerable attention in NeRF compression due to its huge storage cost. To address the challenge of the NeRF compression study, in this paper, we construct a new dataset, called Explicit_NeRF_QA. We use 22 3D objects with diverse geometries, textures, and material complexities to train four typical explicit NeRF models across five parameter levels. Lossy compression is introduced during the model generation, pivoting the selection of key parameters such as hash table size for InstantNGP and voxel grid resolution for Plenoxels. By rendering NeRF samples to processed video sequences (PVS), a large scale subjective experiment with lab environment is conducted to collect subjective scores from 21 viewers. The diversity of content, accuracy of mean opinion scores (MOS), and characteristics of NeRF distortion are comprehensively presented, establishing the heterogeneity of the proposed dataset. The state-of-the-art objective metrics are tested in the new dataset. Best Person correlation, which is around 0.85, is collected from the full-reference objective metric. All tested no-reference metrics report very poor results with 0.4 to 0.6 correlations, demonstrating the need for further development of more robust no-reference metrics. The dataset, including NeRF samples, source 3D objects, multiview images for NeRF generation, PVSs, MOS, is made publicly available at the following location: https://github.com/LittlericeChloe/Explicit_NeRF_QA.
Abstract:In recent years, static meshes with texture maps have become one of the most prevalent digital representations of 3D shapes in various applications, such as animation, gaming, medical imaging, and cultural heritage applications. However, little research has been done on the quality assessment of textured meshes, which hinders the development of quality-oriented applications, such as mesh compression and enhancement. In this paper, we create a large-scale textured mesh quality assessment database, namely SJTU-TMQA, which includes 21 reference meshes and 945 distorted samples. The meshes are rendered into processed video sequences and then conduct subjective experiments to obtain mean opinion scores (MOS). The diversity of content and accuracy of MOS has been shown to validate its heterogeneity and reliability. The impact of various types of distortion on human perception is demonstrated. 13 state-of-the-art objective metrics are evaluated on SJTU-TMQA. The results report the highest correlation of around 0.6, indicating the need for more effective objective metrics. The SJTU-TMQA is available at https://ccccby.github.io