Abstract:This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.
Abstract:In this paper, we propose a novel Multi-granularity Temporal Trajectory Factorization framework for generative human video compression, which holds great potential for bandwidth-constrained human-centric video communication. In particular, the proposed motion factorization strategy can facilitate to implicitly characterize the high-dimensional visual signal into compact motion vectors for representation compactness and further transform these vectors into a fine-grained field for motion expressibility. As such, the coded bit-stream can be entailed with enough visual motion information at the lowest representation cost. Meanwhile, a resolution-expandable generative module is developed with enhanced background stability, such that the proposed framework can be optimized towards higher reconstruction robustness and more flexible resolution adaptation. Experimental results show that proposed method outperforms latest generative models and the state-of-the-art video coding standard Versatile Video Coding (VVC) on both talking-face videos and moving-body videos in terms of both objective and subjective quality. The project page can be found at https://github.com/xyzysz/Extreme-Human-Video-Compression-with-MTTF.
Abstract:This paper proposes to learn generative priors from the motion patterns instead of video contents for generative video compression. The priors are derived from small motion dynamics in common scenes such as swinging trees in the wind and floating boat on the sea. Utilizing such compact motion priors, a novel generative scene dynamics compression framework is built to realize ultra-low bit-rate communication and high-quality reconstruction for diverse scene contents. At the encoder side, motion priors are characterized into compact representations in a dense-to-sparse manner. At the decoder side, the decoded motion priors serve as the trajectory hints for scene dynamics reconstruction via a diffusion-based flow-driven generator. The experimental results illustrate that the proposed method can achieve superior rate-distortion performance and outperform the state-of-the-art conventional video codec Versatile Video Coding (VVC) on scene dynamics sequences. The project page can be found at https://github.com/xyzysz/GNVDC.
Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.
Abstract:In recent years, large visual language models (LVLMs) have shown impressive performance and promising generalization capability in multi-modal tasks, thus replacing humans as receivers of visual information in various application scenarios. In this paper, we pioneer to propose a variable bitrate image compression framework consisting of a pre-editing module and an end-to-end codec to achieve promising rate-accuracy performance for different LVLMs. In particular, instead of optimizing an adaptive pre-editing network towards a particular task or several representative tasks, we propose a new optimization strategy tailored for LVLMs, which is designed based on the representation and discrimination capability with token-level distortion and rank. The pre-editing module and the variable bitrate end-to-end image codec are jointly trained by the losses based on semantic tokens of the large model, which introduce enhanced generalization capability for various data and tasks. {Experimental results demonstrate that the proposed framework could efficiently achieve much better rate-accuracy performance compared to the state-of-the-art coding standard, Versatile Video Coding.} Meanwhile, experiments with multi-modal tasks have revealed the robustness and generalization capability of the proposed framework.
Abstract:Artificial Intelligence Generated Content (AIGC) is leading a new technical revolution for the acquisition of digital content and impelling the progress of visual compression towards competitive performance gains and diverse functionalities over traditional codecs. This paper provides a thorough review on the recent advances of generative visual compression, illustrating great potentials and promising applications in ultra-low bitrate communication, user-specified reconstruction/filtering, and intelligent machine analysis. In particular, we review the visual data compression methodologies with deep generative models, and summarize how compact representation and high-fidelity reconstruction could be actualized via generative techniques. In addition, we generalize related generative compression technologies for machine vision and intelligent analytics. Finally, we discuss the fundamental challenges on generative visual compression techniques and envision their future research directions.
Abstract:Generative Face Video Coding (GFVC) techniques can exploit the compact representation of facial priors and the strong inference capability of deep generative models, achieving high-quality face video communication in ultra-low bandwidth scenarios. This paper conducts a comprehensive survey on the recent advances of the GFVC techniques and standardization efforts, which could be applicable to ultra low bitrate communication, user-specified animation/filtering and metaverse-related functionalities. In particular, we generalize GFVC systems within one coding framework and summarize different GFVC algorithms with their corresponding visual representations. Moreover, we review the GFVC standardization activities that are specified with supplemental enhancement information messages. Finally, we discuss fundamental challenges and broad applications on GFVC techniques and their standardization potentials, as well as envision their future trends. The project page can be found at https://github.com/Berlin0610/Awesome-Generative-Face-Video-Coding.
Abstract:In this paper, we propose a novel framework for Interactive Face Video Coding (IFVC), which allows humans to interact with the intrinsic visual representations instead of the signals. The proposed solution enjoys several distinct advantages, including ultra-compact representation, low delay interaction, and vivid expression and headpose animation. In particular, we propose the Internal Dimension Increase (IDI) based representation, greatly enhancing the fidelity and flexibility in rendering the appearance while maintaining reasonable representation cost. By leveraging strong statistical regularities, the visual signals can be effectively projected into controllable semantics in the three dimensional space (e.g., mouth motion, eye blinking, head rotation and head translation), which are compressed and transmitted. The editable bitstream, which naturally supports the interactivity at the semantic level, can synthesize the face frames via the strong inference ability of the deep generative model. Experimental results have demonstrated the performance superiority and application prospects of our proposed IFVC scheme. In particular, the proposed scheme not only outperforms the state-of-the-art video coding standard Versatile Video Coding (VVC) and the latest generative compression schemes in terms of rate-distortion performance for face videos, but also enables the interactive coding without introducing additional manipulation processes. Furthermore, the proposed framework is expected to shed lights on the future design of the digital human communication in the metaverse.
Abstract:The research of visual signal compression has a long history. Fueled by deep learning, exciting progress has been made recently. Despite achieving better compression performance, existing end-to-end compression algorithms are still designed towards better signal quality in terms of rate-distortion optimization. In this paper, we show that the design and optimization of network architecture could be further improved for compression towards machine vision. We propose an inverted bottleneck structure for end-to-end compression towards machine vision, which specifically accounts for efficient representation of the semantic information. Moreover, we quest the capability of optimization by incorporating the analytics accuracy into the optimization process, and the optimality is further explored with generalized rate-accuracy optimization in an iterative manner. We use object detection as a showcase for end-to-end compression towards machine vision, and extensive experiments show that the proposed scheme achieves significant BD-rate savings in terms of analysis performance. Moreover, the promise of the scheme is also demonstrated with strong generalization capability towards other machine vision tasks, due to the enabling of signal-level reconstruction.
Abstract:Video compression is a basic requirement for consumer and professional video applications alike. Video coding standards such as H.264/AVC and H.265/HEVC are widely deployed in the market to enable efficient use of bandwidth and storage for many video applications. To reduce the coding artifacts and improve the compression efficiency, neural network based loop filtering of the reconstructed video has been developed in the literature. However, loop filtering is a challenging task due to the variation in video content and sampling densities. In this paper, we propose a on-line scaling based multi-density attention network for loop filtering in video compression. The core of our approach lies in several aspects: (a) parallel multi-resolution convolution streams for extracting multi-density features, (b) single attention branch to learn the sample correlations and generate mask maps, (c) a channel-mutual attention procedure to fuse the data from multiple branches, (d) on-line scaling technique to further optimize the output results of network according to the actual signal. The proposed multi-density attention network learns rich features from multiple sampling densities and performs robustly on video content of different resolutions. Moreover, the online scaling process enhances the signal adaptability of the off-line pre-trained model. Experimental results show that 10.18% bit-rate reduction at the same video quality can be achieved over the latest Versatile Video Coding (VVC) standard. The objective performance of the proposed algorithm outperforms the state-of-the-art methods and the subjective quality improvement is obvious in terms of detail preservation and artifact alleviation.