Abstract:Scene observation from multiple perspectives would bring a more comprehensive visual experience. However, in the context of acquiring multiple views in the dark, the highly correlated views are seriously alienated, making it challenging to improve scene understanding with auxiliary views. Recent single image-based enhancement methods may not be able to provide consistently desirable restoration performance for all views due to the ignorance of potential feature correspondence among different views. To alleviate this issue, we make the first attempt to investigate multi-view low-light image enhancement. First, we construct a new dataset called Multi-View Low-light Triplets (MVLT), including 1,860 pairs of triple images with large illumination ranges and wide noise distribution. Each triplet is equipped with three different viewpoints towards the same scene. Second, we propose a deep multi-view enhancement framework based on the Recurrent Collaborative Network (RCNet). Specifically, in order to benefit from similar texture correspondence across different views, we design the recurrent feature enhancement, alignment and fusion (ReEAF) module, in which intra-view feature enhancement (Intra-view EN) followed by inter-view feature alignment and fusion (Inter-view AF) is performed to model the intra-view and inter-view feature propagation sequentially via multi-view collaboration. In addition, two different modules from enhancement to alignment (E2A) and from alignment to enhancement (A2E) are developed to enable the interactions between Intra-view EN and Inter-view AF, which explicitly utilize attentive feature weighting and sampling for enhancement and alignment, respectively. Experimental results demonstrate that our RCNet significantly outperforms other state-of-the-art methods. All of our dataset, code, and model will be available at https://github.com/hluo29/RCNet.
Abstract:Artificial Intelligence Generated Content (AIGC) is leading a new technical revolution for the acquisition of digital content and impelling the progress of visual compression towards competitive performance gains and diverse functionalities over traditional codecs. This paper provides a thorough review on the recent advances of generative visual compression, illustrating great potentials and promising applications in ultra-low bitrate communication, user-specified reconstruction/filtering, and intelligent machine analysis. In particular, we review the visual data compression methodologies with deep generative models, and summarize how compact representation and high-fidelity reconstruction could be actualized via generative techniques. In addition, we generalize related generative compression technologies for machine vision and intelligent analytics. Finally, we discuss the fundamental challenges on generative visual compression techniques and envision their future research directions.
Abstract:While abundant research has been conducted on improving high-level visual understanding and reasoning capabilities of large multimodal models~(LMMs), their visual quality assessment~(IQA) ability has been relatively under-explored. Here we take initial steps towards this goal by employing the two-alternative forced choice~(2AFC) prompting, as 2AFC is widely regarded as the most reliable way of collecting human opinions of visual quality. Subsequently, the global quality score of each image estimated by a particular LMM can be efficiently aggregated using the maximum a posterior estimation. Meanwhile, we introduce three evaluation criteria: consistency, accuracy, and correlation, to provide comprehensive quantifications and deeper insights into the IQA capability of five LMMs. Extensive experiments show that existing LMMs exhibit remarkable IQA ability on coarse-grained quality comparison, but there is room for improvement on fine-grained quality discrimination. The proposed dataset sheds light on the future development of IQA models based on LMMs. The codes will be made publicly available at https://github.com/h4nwei/2AFC-LMMs.
Abstract:Opinion-Unaware Blind Image Quality Assessment (OU-BIQA) models aim to predict image quality without training on reference images and subjective quality scores. Thereinto, image statistical comparison is a classic paradigm, while the performance is limited by the representation ability of visual descriptors. Deep features as visual descriptors have advanced IQA in recent research, but they are discovered to be highly texture-biased and lack of shape-bias. On this basis, we find out that image shape and texture cues respond differently towards distortions, and the absence of either one results in an incomplete image representation. Therefore, to formulate a well-round statistical description for images, we utilize the shapebiased and texture-biased deep features produced by Deep Neural Networks (DNNs) simultaneously. More specifically, we design a Shape-Texture Adaptive Fusion (STAF) module to merge shape and texture information, based on which we formulate qualityrelevant image statistics. The perceptual quality is quantified by the variant Mahalanobis Distance between the inner and outer Shape-Texture Statistics (DSTS), wherein the inner and outer statistics respectively describe the quality fingerprints of the distorted image and natural images. The proposed DSTS delicately utilizes shape-texture statistical relations between different data scales in the deep domain, and achieves state-of-the-art (SOTA) quality prediction performance on images with artificial and authentic distortions.
Abstract:The emergence of digital avatars has raised an exponential increase in the demand for human point clouds with realistic and intricate details. The compression of such data becomes challenging with overwhelming data amounts comprising millions of points. Herein, we leverage the human geometric prior in geometry redundancy removal of point clouds, greatly promoting the compression performance. More specifically, the prior provides topological constraints as geometry initialization, allowing adaptive adjustments with a compact parameter set that could be represented with only a few bits. Therefore, we can envisage high-resolution human point clouds as a combination of geometric priors and structural deviations. The priors could first be derived with an aligned point cloud, and subsequently the difference of features is compressed into a compact latent code. The proposed framework can operate in a play-and-plug fashion with existing learning based point cloud compression methods. Extensive experimental results show that our approach significantly improves the compression performance without deteriorating the quality, demonstrating its promise in a variety of applications.
Abstract:Online travel platforms (OTPs), e.g., Ctrip.com or Fliggy.com, can effectively provide travel-related products or services to users. In this paper, we focus on the multi-scenario click-through rate (CTR) prediction, i.e., training a unified model to serve all scenarios. Existing multi-scenario based CTR methods struggle in the context of OTP setting due to the ignorance of the cold-start users who have very limited data. To fill this gap, we propose a novel method named Cold-Start based Multi-scenario Network (CSMN). Specifically, it consists of two basic components including: 1) User Interest Projection Network (UIPN), which firstly purifies users' behaviors by eliminating the scenario-irrelevant information in behaviors with respect to the visiting scenario, followed by obtaining users' scenario-specific interests by summarizing the purified behaviors with respect to the target item via an attention mechanism; and 2) User Representation Memory Network (URMN), which benefits cold-start users from users with rich behaviors through a memory read and write mechanism. CSMN seamlessly integrates both components in an end-to-end learning framework. Extensive experiments on real-world offline dataset and online A/B test demonstrate the superiority of CSMN over state-of-the-art methods.
Abstract:Hierarchical Task Network (HTN) planning is showing its power in real-world planning. Although domain experts have partial hierarchical domain knowledge, it is time-consuming to specify all HTN methods, leaving them incomplete. On the other hand, traditional HTN learning approaches focus only on declarative goals, omitting the hierarchical domain knowledge. In this paper, we propose a novel learning framework to refine HTN methods via task insertion with completely preserving the original methods. As it is difficult to identify incomplete methods without designating declarative goals for compound tasks, we introduce the notion of prioritized preference to capture the incompleteness possibility of methods. Specifically, the framework first computes the preferred completion profile w.r.t. the prioritized preference to refine the incomplete methods. Then it finds the minimal set of refined methods via a method substitution operation. Experimental analysis demonstrates that our approach is effective, especially in solving new HTN planning instances.
Abstract:The Maximum k-plex Problem is an important combinatorial optimization problem with increasingly wide applications. Due to its exponential time complexity, many heuristic methods have been proposed which can return a good-quality solution in a reasonable time. However, most of the heuristic algorithms are memoryless and unable to utilize the experience during the search. Inspired by the multi-armed bandit (MAB) problem in reinforcement learning (RL), we propose a novel perturbation mechanism named BLP, which can learn online to select a good vertex for perturbation when getting stuck in local optima. To our best of knowledge, this is the first attempt to combine local search with RL for the maximum $ k $-plex problem. Besides, we also propose a novel strategy, named Dynamic-threshold Configuration Checking (DTCC), which extends the original Configuration Checking (CC) strategy from two aspects. Based on the BLP and DTCC, we develop a local search algorithm named BDCC and improve it by a hyperheuristic strategy. The experimental result shows that our algorithms dominate on the standard DIMACS and BHOSLIB benchmarks and achieve state-of-the-art performance on massive graphs.