Abstract:Pre-training for Reinforcement Learning (RL) with purely video data is a valuable yet challenging problem. Although in-the-wild videos are readily available and inhere a vast amount of prior world knowledge, the absence of action annotations and the common domain gap with downstream tasks hinder utilizing videos for RL pre-training. To address the challenge of pre-training with videos, we propose Pre-trained Visual Dynamics Representations (PVDR) to bridge the domain gap between videos and downstream tasks for efficient policy learning. By adopting video prediction as a pre-training task, we use a Transformer-based Conditional Variational Autoencoder (CVAE) to learn visual dynamics representations. The pre-trained visual dynamics representations capture the visual dynamics prior knowledge in the videos. This abstract prior knowledge can be readily adapted to downstream tasks and aligned with executable actions through online adaptation. We conduct experiments on a series of robotics visual control tasks and verify that PVDR is an effective form for pre-training with videos to promote policy learning.
Abstract:The transferable belief model, as a semantic interpretation of Dempster-Shafer theory, enables agents to perform reasoning and decision making in imprecise and incomplete environments. The model offers distinct semantics for handling unreliable testimonies, allowing for a more reasonable and general process of belief transfer compared to the Bayesian approach. However, because both the belief masses and the structure of focal sets must be considered when updating belief functions-leading to extra computational complexity during reasoning-the transferable belief model has gradually lost favor among researchers in recent developments. In this paper, we implement the transferable belief model on quantum circuits and demonstrate that belief functions offer a more concise and effective alternative to Bayesian approaches within the quantum computing framework. Furthermore, leveraging the unique characteristics of quantum computing, we propose several novel belief transfer approaches. More broadly, this paper introduces a new perspective on basic information representation for quantum AI models, suggesting that belief functions are more suitable than Bayesian approach for handling uncertainty on quantum circuits.
Abstract:Diffusion models have made compelling progress on facilitating high-throughput daily production. Nevertheless, the appealing customized requirements are remain suffered from instance-level finetuning for authentic fidelity. Prior zero-shot customization works achieve the semantic consistence through the condensed injection of identity features, while addressing detailed low-level signatures through complex model configurations and subject-specific fabrications, which significantly break the statistical coherence within the overall system and limit the applicability across various scenarios. To facilitate the generic signature concentration with rectified efficiency, we present \textbf{AnyLogo}, a zero-shot region customizer with remarkable detail consistency, building upon the symbiotic diffusion system with eliminated cumbersome designs. Streamlined as vanilla image generation, we discern that the rigorous signature extraction and creative content generation are promisingly compatible and can be systematically recycled within a single denoising model. In place of the external configurations, the gemini status of the denoising model promote the reinforced subject transmission efficiency and disentangled semantic-signature space with continuous signature decoration. Moreover, the sparse recycling paradigm is adopted to prevent the duplicated risk with compressed transmission quota for diversified signature stimulation. Extensive experiments on constructed logo-level benchmarks demonstrate the effectiveness and practicability of our methods.
Abstract:Recently, 3D Gaussian Splatting (3DGS) has garnered attention for its high fidelity and real-time rendering. However, adapting 3DGS to different camera models, particularly fisheye lenses, poses challenges due to the unique 3D to 2D projection calculation. Additionally, there are inefficiencies in the tile-based splatting, especially for the extreme curvature and wide field of view of fisheye lenses, which are crucial for its broader real-life applications. To tackle these challenges, we introduce Fisheye-GS.This innovative method recalculates the projection transformation and its gradients for fisheye cameras. Our approach can be seamlessly integrated as a module into other efficient 3D rendering methods, emphasizing its extensibility, lightweight nature, and modular design. Since we only modified the projection component, it can also be easily adapted for use with different camera models. Compared to methods that train after undistortion, our approach demonstrates a clear improvement in visual quality.
Abstract:Scene observation from multiple perspectives would bring a more comprehensive visual experience. However, in the context of acquiring multiple views in the dark, the highly correlated views are seriously alienated, making it challenging to improve scene understanding with auxiliary views. Recent single image-based enhancement methods may not be able to provide consistently desirable restoration performance for all views due to the ignorance of potential feature correspondence among different views. To alleviate this issue, we make the first attempt to investigate multi-view low-light image enhancement. First, we construct a new dataset called Multi-View Low-light Triplets (MVLT), including 1,860 pairs of triple images with large illumination ranges and wide noise distribution. Each triplet is equipped with three different viewpoints towards the same scene. Second, we propose a deep multi-view enhancement framework based on the Recurrent Collaborative Network (RCNet). Specifically, in order to benefit from similar texture correspondence across different views, we design the recurrent feature enhancement, alignment and fusion (ReEAF) module, in which intra-view feature enhancement (Intra-view EN) followed by inter-view feature alignment and fusion (Inter-view AF) is performed to model the intra-view and inter-view feature propagation sequentially via multi-view collaboration. In addition, two different modules from enhancement to alignment (E2A) and from alignment to enhancement (A2E) are developed to enable the interactions between Intra-view EN and Inter-view AF, which explicitly utilize attentive feature weighting and sampling for enhancement and alignment, respectively. Experimental results demonstrate that our RCNet significantly outperforms other state-of-the-art methods. All of our dataset, code, and model will be available at https://github.com/hluo29/RCNet.
Abstract:In recent years, various intelligent autonomous robots have begun to appear in daily life and production. Desktop-level robots are characterized by their flexible deployment, rapid response, and suitability for light workload environments. In order to meet the current societal demand for service robot technology, this study proposes using a miniaturized desktop-level robot (by ROS) as a carrier, locally deploying a natural language model (NLP-BERT), and integrating visual recognition (CV-YOLO) and speech recognition technology (ASR-Whisper) as inputs to achieve autonomous decision-making and rational action by the desktop robot. Three comprehensive experiments were designed to validate the robotic arm, and the results demonstrate excellent performance using this approach across all three experiments. In Task 1, the execution rates for speech recognition and action performance were 92.6% and 84.3%, respectively. In Task 2, the highest execution rates under the given conditions reached 92.1% and 84.6%, while in Task 3, the highest execution rates were 95.2% and 80.8%, respectively. Therefore, it can be concluded that the proposed solution integrating ASR, NLP, and other technologies on edge devices is feasible and provides a technical and engineering foundation for realizing multimodal desktop-level robots.
Abstract:Compressive sensing is a promising solution for the channel estimation in multiple-input multiple-output (MIMO) systems with large antenna arrays and constrained hardware. Utilizing site-specific channel data from real-world systems, deep learning can be employed to learn the compressive sensing measurement vectors with minimum redundancy, thereby focusing sensing power on promising spatial directions of the channel. Collecting real-world channel data, however, is challenging due to the high overhead resulting from the large number of antennas and hardware constraints. In this paper, we propose leveraging a site-specific digital twin to generate synthetic channel data, which shares a similar distribution with real-world data. The synthetic data is then used to train the deep learning models for learning measurement vectors and hybrid precoder/combiner design in an end-to-end manner. We further propose a model refinement approach to fine-tune the model pre-trained on the digital twin data with a small amount of real-world data. The evaluation results show that, by training the model on the digital twin data, the learned measurement vectors can be efficiently adapted to the environment geometry, leading to high performance of hybrid precoding for real-world deployments. Moreover, the model refinement approach can enable the digital twin aided model to achieve comparable performance to the model trained on the real-world dataset with a significantly reduced amount of real-world data.
Abstract:The correspondence between input text and the generated image exhibits opacity, wherein minor textual modifications can induce substantial deviations in the generated image. While, text embedding, as the pivotal intermediary between text and images, remains relatively underexplored. In this paper, we address this research gap by delving into the text embedding space, unleashing its capacity for controllable image editing and explicable semantic direction attributes within a learning-free framework. Specifically, we identify two critical insights regarding the importance of per-word embedding and their contextual correlations within text embedding, providing instructive principles for learning-free image editing. Additionally, we find that text embedding inherently possesses diverse semantic potentials, and further reveal this property through the lens of singular value decomposition (SVD). These uncovered properties offer practical utility for image editing and semantic discovery. More importantly, we expect the in-depth analyses and findings of the text embedding can enhance the understanding of text-to-image diffusion models.
Abstract:Supervised image captioning approaches have made great progress, but it is challenging to collect high-quality human-annotated image-text data. Recently, large-scale vision and language models (e.g., CLIP) and large-scale generative language models (e.g., GPT-2) have shown strong performances in various tasks, which also provide some new solutions for image captioning with web paired data, unpaired data or even text-only data. Among them, the mainstream solution is to project image embeddings into the text embedding space with the assistance of consistent representations between image-text pairs from the CLIP model. However, the current methods still face several challenges in adapting to the diversity of data configurations in a unified solution, accurately estimating image-text embedding bias, and correcting unsatisfactory prediction results in the inference stage. This paper proposes a new Text data-centric approach with Interactive Prompts for image Captioning, named TIPCap. 1) We consider four different settings which gradually reduce the dependence on paired data. 2) We construct a mapping module driven by multivariate Gaussian distribution to mitigate the modality gap, which is applicable to the above four different settings. 3) We propose a prompt interaction module that can incorporate optional prompt information before generating captions. Extensive experiments show that our TIPCap outperforms other weakly or unsupervised image captioning methods and achieves a new state-of-the-art performance on two widely used datasets, i.e., MS-COCO and Flickr30K.
Abstract:Existing hyperspectral image (HSI) super-resolution (SR) methods struggle to effectively capture the complex spectral-spatial relationships and low-level details, while diffusion models represent a promising generative model known for their exceptional performance in modeling complex relations and learning high and low-level visual features. The direct application of diffusion models to HSI SR is hampered by challenges such as difficulties in model convergence and protracted inference time. In this work, we introduce a novel Group-Autoencoder (GAE) framework that synergistically combines with the diffusion model to construct a highly effective HSI SR model (DMGASR). Our proposed GAE framework encodes high-dimensional HSI data into low-dimensional latent space where the diffusion model works, thereby alleviating the difficulty of training the diffusion model while maintaining band correlation and considerably reducing inference time. Experimental results on both natural and remote sensing hyperspectral datasets demonstrate that the proposed method is superior to other state-of-the-art methods both visually and metrically.