Abstract:Class-Agnostic Counting (CAC) seeks to accurately count objects in a given image with only a few reference examples. While previous methods achieving this relied on additional training, recent efforts have shown that it's possible to accomplish this without training by utilizing pre-existing foundation models, particularly the Segment Anything Model (SAM), for counting via instance-level segmentation. Although promising, current training-free methods still lag behind their training-based counterparts in terms of performance. In this research, we present a straightforward training-free solution that effectively bridges this performance gap, serving as a strong baseline. The primary contribution of our work lies in the discovery of four key technologies that can enhance performance. Specifically, we suggest employing a superpixel algorithm to generate more precise initial point prompts, utilizing an image encoder with richer semantic knowledge to replace the SAM encoder for representing candidate objects, and adopting a multiscale mechanism and a transductive prototype scheme to update the representation of reference examples. By combining these four technologies, our approach achieves significant improvements over existing training-free methods and delivers performance on par with training-based ones.
Abstract:Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the OOD instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the ID data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. Codes will be available upon acceptance.
Abstract:We present a novel framework for exemplar based image translation. Recent advanced methods for this task mainly focus on establishing cross-domain semantic correspondence, which sequentially dominates image generation in the manner of local style control. Unfortunately, cross-domain semantic matching is challenging; and matching errors ultimately degrade the quality of generated images. To overcome this challenge, we improve the accuracy of matching on the one hand, and diminish the role of matching in image generation on the other hand. To achieve the former, we propose a masked and adaptive transformer (MAT) for learning accurate cross-domain correspondence, and executing context-aware feature augmentation. To achieve the latter, we use source features of the input and global style codes of the exemplar, as supplementary information, for decoding an image. Besides, we devise a novel contrastive style learning method, for acquire quality-discriminative style representations, which in turn benefit high-quality image generation. Experimental results show that our method, dubbed MATEBIT, performs considerably better than state-of-the-art methods, in diverse image translation tasks. The codes are available at \url{https://github.com/AiArt-HDU/MATEBIT}.
Abstract:Autoencoding, which aims to reconstruct the input images through a bottleneck latent representation, is one of the classic feature representation learning strategies. It has been shown effective as an auxiliary task for semi-supervised learning but has become less popular as more sophisticated methods have been proposed in recent years. In this paper, we revisit the idea of using image reconstruction as the auxiliary task and incorporate it with a modern semi-supervised semantic segmentation framework. Surprisingly, we discover that such an old idea in semi-supervised learning can produce results competitive with state-of-the-art semantic segmentation algorithms. By visualizing the intermediate layer activations of the image reconstruction module, we show that the feature map channel could correlate well with the semantic concept, which explains why joint training with the reconstruction task is helpful for the segmentation task. Motivated by our observation, we further proposed a modification to the image reconstruction task, aiming to further disentangle the object clue from the background patterns. From experiment evaluation on various datasets, we show that using reconstruction as auxiliary loss can lead to consistent improvements in various datasets and methods. The proposed method can further lead to significant improvement in object-centric segmentation tasks.
Abstract:Natural Language Processing(NLP) demonstrates a great potential to support financial decision-making by analyzing the text from social media or news outlets. In this work, we build a platform to study the NLP-aided stock auto-trading algorithms systematically. In contrast to the previous work, our platform is characterized by three features: (1) We provide financial news for each specific stock. (2) We provide various stock factors for each stock. (3) We evaluate performance from more financial-relevant metrics. Such a design allows us to develop and evaluate NLP-aided stock auto-trading algorithms in a more realistic setting. In addition to designing an evaluation platform and dataset collection, we also made a technical contribution by proposing a system to automatically learn a good feature representation from various input information. The key to our algorithm is a method called semantic role labeling Pooling (SRLP), which leverages Semantic Role Labeling (SRL) to create a compact representation of each news paragraph. Based on SRLP, we further incorporate other stock factors to make the final prediction. In addition, we propose a self-supervised learning strategy based on SRLP to enhance the out-of-distribution generalization performance of our system. Through our experimental study, we show that the proposed method achieves better performance and outperforms all the baselines' annualized rate of return as well as the maximum drawdown of the CSI300 index and XIN9 index on real trading. Our Astock dataset and code are available at https://github.com/JinanZou/Astock.