Abstract:We propose ChainHOI, a novel approach for text-driven human-object interaction (HOI) generation that explicitly models interactions at both the joint and kinetic chain levels. Unlike existing methods that implicitly model interactions using full-body poses as tokens, we argue that explicitly modeling joint-level interactions is more natural and effective for generating realistic HOIs, as it directly captures the geometric and semantic relationships between joints, rather than modeling interactions in the latent pose space. To this end, ChainHOI introduces a novel joint graph to capture potential interactions with objects, and a Generative Spatiotemporal Graph Convolution Network to explicitly model interactions at the joint level. Furthermore, we propose a Kinematics-based Interaction Module that explicitly models interactions at the kinetic chain level, ensuring more realistic and biomechanically coherent motions. Evaluations on two public datasets demonstrate that ChainHOI significantly outperforms previous methods, generating more realistic, and semantically consistent HOIs. Code is available \href{https://github.com/qinghuannn/ChainHOI}{here}.
Abstract:Bimanual robotic manipulation is an emerging and critical topic in the robotics community. Previous works primarily rely on integrated control models that take the perceptions and states of both arms as inputs to directly predict their actions. However, we think bimanual manipulation involves not only coordinated tasks but also various uncoordinated tasks that do not require explicit cooperation during execution, such as grasping objects with the closest hand, which integrated control frameworks ignore to consider due to their enforced cooperation in the early inputs. In this paper, we propose a novel decoupled interaction framework that considers the characteristics of different tasks in bimanual manipulation. The key insight of our framework is to assign an independent model to each arm to enhance the learning of uncoordinated tasks, while introducing a selective interaction module that adaptively learns weights from its own arm to improve the learning of coordinated tasks. Extensive experiments on seven tasks in the RoboTwin dataset demonstrate that: (1) Our framework achieves outstanding performance, with a 23.5% boost over the SOTA method. (2) Our framework is flexible and can be seamlessly integrated into existing methods. (3) Our framework can be effectively extended to multi-agent manipulation tasks, achieving a 28% boost over the integrated control SOTA. (4) The performance boost stems from the decoupled design itself, surpassing the SOTA by 16.5% in success rate with only 1/6 of the model size.
Abstract:Language-guided robot dexterous generation enables robots to grasp and manipulate objects based on human commands. However, previous data-driven methods are hard to understand intention and execute grasping with unseen categories in the open set. In this work, we explore a new task, Open-set Language-guided Dexterous Grasp, and find that the main challenge is the huge gap between high-level human language semantics and low-level robot actions. To solve this problem, we propose an Affordance Dexterous Grasp (AffordDexGrasp) framework, with the insight of bridging the gap with a new generalizable-instructive affordance representation. This affordance can generalize to unseen categories by leveraging the object's local structure and category-agnostic semantic attributes, thereby effectively guiding dexterous grasp generation. Built upon the affordance, our framework introduces Affordacne Flow Matching (AFM) for affordance generation with language as input, and Grasp Flow Matching (GFM) for generating dexterous grasp with affordance as input. To evaluate our framework, we build an open-set table-top language-guided dexterous grasp dataset. Extensive experiments in the simulation and real worlds show that our framework surpasses all previous methods in open-set generalization.
Abstract:The development of a generalist agent with adaptive multiple manipulation skills has been a long-standing goal in the robotics community. In this paper, we explore a crucial task, skill-incremental learning, in robotic manipulation, which is to endow the robots with the ability to learn new manipulation skills based on the previous learned knowledge without re-training. First, we build a skill-incremental environment based on the RLBench benchmark, and explore how traditional incremental methods perform in this setting. We find that they suffer from severe catastrophic forgetting due to the previous methods on classification overlooking the characteristics of temporality and action complexity in robotic manipulation tasks. Towards this end, we propose an incremental Manip}ulation framework, termed iManip, to mitigate the above issues. We firstly design a temporal replay strategy to maintain the integrity of old skills when learning new skill. Moreover, we propose the extendable PerceiverIO, consisting of an action prompt with extendable weight to adapt to new action primitives in new skill. Extensive experiments show that our framework performs well in Skill-Incremental Learning. Codes of the skill-incremental environment with our framework will be open-source.
Abstract:Tactile sensing is essential for dexterous manipulation, yet large-scale human demonstration datasets lack tactile feedback, limiting their effectiveness in skill transfer to robots. To address this, we introduce TacCap, a wearable Fiber Bragg Grating (FBG)-based tactile sensor designed for seamless human-to-robot transfer. TacCap is lightweight, durable, and immune to electromagnetic interference, making it ideal for real-world data collection. We detail its design and fabrication, evaluate its sensitivity, repeatability, and cross-sensor consistency, and assess its effectiveness through grasp stability prediction and ablation studies. Our results demonstrate that TacCap enables transferable tactile data collection, bridging the gap between human demonstrations and robotic execution. To support further research and development, we open-source our hardware design and software.
Abstract:For 6-DoF grasp detection, simulated data is expandable to train more powerful model, but it faces the challenge of the large gap between simulation and real world. Previous works bridge this gap with a sim-to-real way. However, this way explicitly or implicitly forces the simulated data to adapt to the noisy real data when training grasp detectors, where the positional drift and structural distortion within the camera noise will harm the grasp learning. In this work, we propose a Real-to-Sim framework for 6-DoF Grasp detection, named R2SGrasp, with the key insight of bridging this gap in a real-to-sim way, which directly bypasses the camera noise in grasp detector training through an inference-time real-to-sim adaption. To achieve this real-to-sim adaptation, our R2SGrasp designs the Real-to-Sim Data Repairer (R2SRepairer) to mitigate the camera noise of real depth maps in data-level, and the Real-to-Sim Feature Enhancer (R2SEnhancer) to enhance real features with precise simulated geometric primitives in feature-level. To endow our framework with the generalization ability, we construct a large-scale simulated dataset cost-efficiently to train our grasp detector, which includes 64,000 RGB-D images with 14.4 million grasp annotations. Sufficient experiments show that R2SGrasp is powerful and our real-to-sim perspective is effective. The real-world experiments further show great generalization ability of R2SGrasp. Project page is available on https://isee-laboratory.github.io/R2SGrasp.
Abstract:Robotic grasping in clutters is a fundamental task in robotic manipulation. In this work, we propose an economic framework for 6-DoF grasp detection, aiming to economize the resource cost in training and meanwhile maintain effective grasp performance. To begin with, we discover that the dense supervision is the bottleneck of current SOTA methods that severely encumbers the entire training overload, meanwhile making the training difficult to converge. To solve the above problem, we first propose an economic supervision paradigm for efficient and effective grasping. This paradigm includes a well-designed supervision selection strategy, selecting key labels basically without ambiguity, and an economic pipeline to enable the training after selection. Furthermore, benefit from the economic supervision, we can focus on a specific grasp, and thus we devise a focal representation module, which comprises an interactive grasp head and a composite score estimation to generate the specific grasp more accurately. Combining all together, the EconomicGrasp framework is proposed. Our extensive experiments show that EconomicGrasp surpasses the SOTA grasp method by about 3AP on average, and with extremely low resource cost, for about 1/4 training time cost, 1/8 memory cost and 1/30 storage cost. Our code is available at https://github.com/iSEE-Laboratory/EconomicGrasp.
Abstract:This paper explores a novel task ""Dexterous Grasp as You Say"" (DexGYS), enabling robots to perform dexterous grasping based on human commands expressed in natural language. However, the development of this field is hindered by the lack of datasets with natural human guidance; thus, we propose a language-guided dexterous grasp dataset, named DexGYSNet, offering high-quality dexterous grasp annotations along with flexible and fine-grained human language guidance. Our dataset construction is cost-efficient, with the carefully-design hand-object interaction retargeting strategy, and the LLM-assisted language guidance annotation system. Equipped with this dataset, we introduce the DexGYSGrasp framework for generating dexterous grasps based on human language instructions, with the capability of producing grasps that are intent-aligned, high quality and diversity. To achieve this capability, our framework decomposes the complex learning process into two manageable progressive objectives and introduce two components to realize them. The first component learns the grasp distribution focusing on intention alignment and generation diversity. And the second component refines the grasp quality while maintaining intention consistency. Extensive experiments are conducted on DexGYSNet and real world environment for validation.
Abstract:In this work, we propose a novel discriminative framework for dexterous grasp generation, named Dexterous Grasp TRansformer (DGTR), capable of predicting a diverse set of feasible grasp poses by processing the object point cloud with only one forward pass. We formulate dexterous grasp generation as a set prediction task and design a transformer-based grasping model for it. However, we identify that this set prediction paradigm encounters several optimization challenges in the field of dexterous grasping and results in restricted performance. To address these issues, we propose progressive strategies for both the training and testing phases. First, the dynamic-static matching training (DSMT) strategy is presented to enhance the optimization stability during the training phase. Second, we introduce the adversarial-balanced test-time adaptation (AB-TTA) with a pair of adversarial losses to improve grasping quality during the testing phase. Experimental results on the DexGraspNet dataset demonstrate the capability of DGTR to predict dexterous grasp poses with both high quality and diversity. Notably, while keeping high quality, the diversity of grasp poses predicted by DGTR significantly outperforms previous works in multiple metrics without any data pre-processing. Codes are available at https://github.com/iSEE-Laboratory/DGTR .
Abstract:In this work, we explore a novel task of generating human grasps based on single-view scene point clouds, which more accurately mirrors the typical real-world situation of observing objects from a single viewpoint. Due to the incompleteness of object point clouds and the presence of numerous scene points, the generated hand is prone to penetrating into the invisible parts of the object and the model is easily affected by scene points. Thus, we introduce S2HGrasp, a framework composed of two key modules: the Global Perception module that globally perceives partial object point clouds, and the DiffuGrasp module designed to generate high-quality human grasps based on complex inputs that include scene points. Additionally, we introduce S2HGD dataset, which comprises approximately 99,000 single-object single-view scene point clouds of 1,668 unique objects, each annotated with one human grasp. Our extensive experiments demonstrate that S2HGrasp can not only generate natural human grasps regardless of scene points, but also effectively prevent penetration between the hand and invisible parts of the object. Moreover, our model showcases strong generalization capability when applied to unseen objects. Our code and dataset are available at https://github.com/iSEE-Laboratory/S2HGrasp.