Abstract:Incremental learning aims to overcome catastrophic forgetting when learning deep networks from sequential tasks. With impressive learning efficiency and performance, prompt-based methods adopt a fixed backbone to sequential tasks by learning task-specific prompts. However, existing prompt-based methods heavily rely on strong pretraining (typically trained on ImageNet-21k), and we find that their models could be trapped if the potential gap between the pretraining task and unknown future tasks is large. In this work, we develop a learnable Adaptive Prompt Generator (APG). The key is to unify the prompt retrieval and prompt learning processes into a learnable prompt generator. Hence, the whole prompting process can be optimized to reduce the negative effects of the gap between tasks effectively. To make our APG avoid learning ineffective knowledge, we maintain a knowledge pool to regularize APG with the feature distribution of each class. Extensive experiments show that our method significantly outperforms advanced methods in exemplar-free incremental learning without (strong) pretraining. Besides, under strong retraining, our method also has comparable performance to existing prompt-based models, showing that our method can still benefit from pretraining. Codes can be found at https://github.com/TOM-tym/APG
Abstract:As a de facto solution, the vanilla Vision Transformers (ViTs) are encouraged to model long-range dependencies between arbitrary image patches while the global attended receptive field leads to quadratic computational cost. Another branch of Vision Transformers exploits local attention inspired by CNNs, which only models the interactions between patches in small neighborhoods. Although such a solution reduces the computational cost, it naturally suffers from small attended receptive fields, which may limit the performance. In this work, we explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field. By analyzing the patch interaction of global attention in ViTs, we observe two key properties in the shallow layers, namely locality and sparsity, indicating the redundancy of global dependency modeling in shallow layers of ViTs. Accordingly, we propose Multi-Scale Dilated Attention (MSDA) to model local and sparse patch interaction within the sliding window. With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages. Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks. On ImageNet-1K classification task, DilateFormer achieves comparable performance with 70% fewer FLOPs compared with existing state-of-the-art models. Our DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-1K classification task, 53.5% box mAP/46.1% mask mAP on COCO object detection/instance segmentation task and 51.1% MS mIoU on ADE20K semantic segmentation task.
Abstract:Deep neural network (DNN) suffers from catastrophic forgetting when learning incrementally, which greatly limits its applications. Although maintaining a handful of samples (called `exemplars`) of each task could alleviate forgetting to some extent, existing methods are still limited by the small number of exemplars since these exemplars are too few to carry enough task-specific knowledge, and therefore the forgetting remains. To overcome this problem, we propose to `imagine` diverse counterparts of given exemplars referring to the abundant semantic-irrelevant information from unlabeled data. Specifically, we develop a learnable feature generator to diversify exemplars by adaptively generating diverse counterparts of exemplars based on semantic information from exemplars and semantically-irrelevant information from unlabeled data. We introduce semantic contrastive learning to enforce the generated samples to be semantic consistent with exemplars and perform semanticdecoupling contrastive learning to encourage diversity of generated samples. The diverse generated samples could effectively prevent DNN from forgetting when learning new tasks. Our method does not bring any extra inference cost and outperforms state-of-the-art methods on two benchmarks CIFAR-100 and ImageNet-Subset by a clear margin.