Abstract:Recent advances in Large Multi-modal Models (LMMs) are primarily focused on offline video understanding. Instead, streaming video understanding poses great challenges to recent models due to its time-sensitive, omni-modal and interactive characteristics. In this work, we aim to extend the streaming video understanding from a new perspective and propose a novel task named Visual Instruction Feedback in which models should be aware of visual contents and learn to extract instructions from them. For example, when users wave their hands to agents, agents should recognize the gesture and start conversations with welcome information. Thus, following instructions in visual modality greatly enhances user-agent interactions. To facilitate research, we define seven key subtasks highly relevant to visual modality and collect the ViSpeak-Instruct dataset for training and the ViSpeak-Bench for evaluation. Further, we propose the ViSpeak model, which is a SOTA streaming video understanding LMM with GPT-4o-level performance on various streaming video understanding benchmarks. After finetuning on our ViSpeak-Instruct dataset, ViSpeak is equipped with basic visual instruction feedback ability, serving as a solid baseline for future research.
Abstract:In general, humans would grasp an object differently for different tasks, e.g., "grasping the handle of a knife to cut" vs. "grasping the blade to hand over". In the field of robotic grasp pose detection research, some existing works consider this task-oriented grasping and made some progress, but they are generally constrained by low-DoF gripper type or non-cluttered setting, which is not applicable for human assistance in real life. With an aim to get more general and practical grasp models, in this paper, we investigate the problem named Task-Oriented 6-DoF Grasp Pose Detection in Clutters (TO6DGC), which extends the task-oriented problem to a more general 6-DOF Grasp Pose Detection in Cluttered (multi-object) scenario. To this end, we construct a large-scale 6-DoF task-oriented grasping dataset, 6-DoF Task Grasp (6DTG), which features 4391 cluttered scenes with over 2 million 6-DoF grasp poses. Each grasp is annotated with a specific task, involving 6 tasks and 198 objects in total. Moreover, we propose One-Stage TaskGrasp (OSTG), a strong baseline to address the TO6DGC problem. Our OSTG adopts a task-oriented point selection strategy to detect where to grasp, and a task-oriented grasp generation module to decide how to grasp given a specific task. To evaluate the effectiveness of OSTG, extensive experiments are conducted on 6DTG. The results show that our method outperforms various baselines on multiple metrics. Real robot experiments also verify that our OSTG has a better perception of the task-oriented grasp points and 6-DoF grasp poses.
Abstract:Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. Despite notable progress in recent years, current RVOS models remain struggle to handle complicated object descriptions due to their limited video-language understanding. To address this limitation, we present \textbf{ReferDINO}, an end-to-end RVOS model that inherits strong vision-language understanding from the pretrained visual grounding foundation models, and is further endowed with effective temporal understanding and object segmentation capabilities. In ReferDINO, we contribute three technical innovations for effectively adapting the foundation models to RVOS: 1) an object-consistent temporal enhancer that capitalizes on the pretrained object-text representations to enhance temporal understanding and object consistency; 2) a grounding-guided deformable mask decoder that integrates text and grounding conditions to generate accurate object masks; 3) a confidence-aware query pruning strategy that significantly improves the object decoding efficiency without compromising performance. We conduct extensive experiments on five public RVOS benchmarks to demonstrate that our proposed ReferDINO outperforms state-of-the-art methods significantly. Project page: \url{https://isee-laboratory.github.io/ReferDINO}
Abstract:To guide a learner to master the action skills, it is crucial for a coach to 1) reason through the learner's action execution and technical keypoints, and 2) provide detailed, understandable feedback on what is done well and what can be improved. However, existing score-based action assessment methods are still far from this practical scenario. To bridge this gap, we investigate a new task termed Descriptive Action Coaching (DAC) which requires a model to provide detailed commentary on what is done well and what can be improved beyond a quality score from an action execution. To this end, we construct a new dataset named EE4D-DAC. With an LLM-based annotation pipeline, our dataset goes beyond the existing action assessment datasets by providing the hierarchical coaching commentary at both keypoint and instance levels. Furthermore, we propose TechCoach, a new framework that explicitly incorporates keypoint-level reasoning into the DAC process. The central to our method lies in the Context-aware Keypoint Reasoner, which enables TechCoach to learn keypoint-related quality representations by querying visual context under the supervision of keypoint-level coaching commentary. Prompted by the visual context and the keypoint-related quality representations, a unified Keypoint-aware Action Assessor is then employed to provide the overall coaching commentary together with the quality score. Combining all of these, we build a new benchmark for DAC and evaluate the effectiveness of our method through extensive experiments. Data and code will be publicly available.
Abstract:To address the zero-shot temporal action localization (ZSTAL) task, existing works develop models that are generalizable to detect and classify actions from unseen categories. They typically develop a category-agnostic action detector and combine it with the Contrastive Language-Image Pre-training (CLIP) model to solve ZSTAL. However, these methods suffer from incomplete action proposals generated for \textit{unseen} categories, since they follow a frame-level prediction paradigm and require hand-crafted post-processing to generate action proposals. To address this problem, in this work, we propose a novel model named Generalizable Action Proposal generator (GAP), which can interface seamlessly with CLIP and generate action proposals in a holistic way. Our GAP is built in a query-based architecture and trained with a proposal-level objective, enabling it to estimate proposal completeness and eliminate the hand-crafted post-processing. Based on this architecture, we propose an Action-aware Discrimination loss to enhance the category-agnostic dynamic information of actions. Besides, we introduce a Static-Dynamic Rectifying module that incorporates the generalizable static information from CLIP to refine the predicted proposals, which improves proposal completeness in a generalizable manner. Our experiments show that our GAP achieves state-of-the-art performance on two challenging ZSTAL benchmarks, i.e., Thumos14 and ActivityNet1.3. Specifically, our model obtains significant performance improvement over previous works on the two benchmarks, i.e., +3.2% and +3.4% average mAP, respectively.
Abstract:This work presents ParGo, a novel Partial-Global projector designed to connect the vision and language modalities for Multimodal Large Language Models (MLLMs). Unlike previous works that rely on global attention-based projectors, our ParGo bridges the representation gap between the separately pre-trained vision encoders and the LLMs by integrating global and partial views, which alleviates the overemphasis on prominent regions. To facilitate the effective training of ParGo, we collect a large-scale detail-captioned image-text dataset named ParGoCap-1M-PT, consisting of 1 million images paired with high-quality captions. Extensive experiments on several MLLM benchmarks demonstrate the effectiveness of our ParGo, highlighting its superiority in aligning vision and language modalities. Compared to conventional Q-Former projector, our ParGo achieves an improvement of 259.96 in MME benchmark. Furthermore, our experiments reveal that ParGo significantly outperforms other projectors, particularly in tasks that emphasize detail perception ability.
Abstract:We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer.
Abstract:Learning generalizable visual dynamic representation across different embodied environments is crucial for real-world robotic manipulation. As the scale and diversity of robot demonstration data are limited, recent works have turned to large-scale pre-training using human data. However, the morphological differences between humans and robots introduce a significant human-robot domain discrepancy, challenging the generalization of these human-data pre-trained models to downstream manipulation tasks. To address this, we propose a novel adaptation paradigm that utilizes readily available paired human-robot video data to bridge the discrepancy. Following this paradigm, our method exploits a human-robot contrastive alignment loss to align the semantics of human and robot videos, adapting pre-trained models to the robotic domain in a parameter-efficient manner. The experiments demonstrate significant improvements on 25 tasks across three different benchmarks, where the single-task, language-conditioned multi-task settings are covered, and two different pre-trained models are evaluated. On the large RLBench benchmark, our adaptation method achieves an average improvement of $8.9\%$ in success rate over the pre-trained R3M model across multiple tasks. We will release the code and models upon acceptance.
Abstract:Contrastive Language-Image Pretraining (CLIP) has shown remarkable open-vocabulary abilities across various image understanding tasks. Building upon this impressive success, recent pioneer works have proposed to adapt the powerful CLIP to video data, leading to efficient and effective video learners for open-vocabulary action recognition. Inspired by the fact that humans perform actions in diverse environments, our work delves into an intriguing question: Can CLIP-based video learners effectively generalize to video domains they have not encountered during training? To answer this, we establish a CROSS-domain Open-Vocabulary Action recognition benchmark named XOV-Action, and conduct a comprehensive evaluation of five state-of-the-art CLIP-based video learners under various types of domain gaps. Our evaluation demonstrates that previous methods exhibit limited action recognition performance in unseen video domains, revealing potential challenges of the cross-domain open-vocabulary action recognition task. To address this task, our work focuses on a critical challenge, namely scene bias, and we accordingly contribute a novel scene-aware video-text alignment method. Our key idea is to distinguish video representations apart from scene-encoded text representations, aiming to learn scene-agnostic video representations for recognizing actions across domains. Extensive experimental results demonstrate the effectiveness of our method. The benchmark and code will be available at https://github.com/KunyuLin/XOV-Action/.
Abstract:Zero-shot action recognition (ZSAR) aims to learn an alignment model between videos and class descriptions of seen actions that is transferable to unseen actions. The text queries (class descriptions) used in existing ZSAR works, however, are often short action names that fail to capture the rich semantics in the videos, leading to misalignment. With the intuition that video content descriptions (e.g., video captions) can provide rich contextual information of visual concepts in videos, we propose to utilize human annotated video descriptions to enrich the semantics of the class descriptions of each action. However, all existing action video description datasets are limited in terms of the number of actions, the semantics of video descriptions, etc. To this end, we collect a large-scale action video descriptions dataset named ActionHub, which covers a total of 1,211 common actions and provides 3.6 million action video descriptions. With the proposed ActionHub dataset, we further propose a novel Cross-modality and Cross-action Modeling (CoCo) framework for ZSAR, which consists of a Dual Cross-modality Alignment module and a Cross-action Invariance Mining module. Specifically, the Dual Cross-modality Alignment module utilizes both action labels and video descriptions from ActionHub to obtain rich class semantic features for feature alignment. The Cross-action Invariance Mining module exploits a cycle-reconstruction process between the class semantic feature spaces of seen actions and unseen actions, aiming to guide the model to learn cross-action invariant representations. Extensive experimental results demonstrate that our CoCo framework significantly outperforms the state-of-the-art on three popular ZSAR benchmarks (i.e., Kinetics-ZSAR, UCF101 and HMDB51) under two different learning protocols in ZSAR. We will release our code, models, and the proposed ActionHub dataset.