Abstract:Recent vision foundation models can extract universal representations and show impressive abilities in various tasks. However, their application on object detection is largely overlooked, especially without fine-tuning them. In this work, we show that frozen foundation models can be a versatile feature enhancer, even though they are not pre-trained for object detection. Specifically, we explore directly transferring the high-level image understanding of foundation models to detectors in the following two ways. First, the class token in foundation models provides an in-depth understanding of the complex scene, which facilitates decoding object queries in the detector's decoder by providing a compact context. Additionally, the patch tokens in foundation models can enrich the features in the detector's encoder by providing semantic details. Utilizing frozen foundation models as plug-and-play modules rather than the commonly used backbone can significantly enhance the detector's performance while preventing the problems caused by the architecture discrepancy between the detector's backbone and the foundation model. With such a novel paradigm, we boost the SOTA query-based detector DINO from 49.0% AP to 51.9% AP (+2.9% AP) and further to 53.8% AP (+4.8% AP) by integrating one or two foundation models respectively, on the COCO validation set after training for 12 epochs with R50 as the detector's backbone.
Abstract:Text-to-3D generation aims to create 3D assets from text-to-image diffusion models. However, existing methods face an inherent bottleneck in generation quality because the widely-used objectives such as Score Distillation Sampling (SDS) inappropriately omit U-Net jacobians for swift generation, leading to significant bias compared to the "true" gradient obtained by full denoising sampling. This bias brings inconsistent updating direction, resulting in implausible 3D generation e.g., color deviation, Janus problem, and semantically inconsistent details). In this work, we propose Pose-dependent Consistency Distillation Sampling (PCDS), a novel yet efficient objective for diffusion-based 3D generation tasks. Specifically, PCDS builds the pose-dependent consistency function within diffusion trajectories, allowing to approximate true gradients through minimal sampling steps (1-3). Compared to SDS, PCDS can acquire a more accurate updating direction with the same sampling time (1 sampling step), while enabling few-step (2-3) sampling to trade compute for higher generation quality. For efficient generation, we propose a coarse-to-fine optimization strategy, which first utilizes 1-step PCDS to create the basic structure of 3D objects, and then gradually increases PCDS steps to generate fine-grained details. Extensive experiments demonstrate that our approach outperforms the state-of-the-art in generation quality and training efficiency, conspicuously alleviating the implausible 3D generation issues caused by the deviated updating direction. Moreover, it can be simply applied to many 3D generative applications to yield impressive 3D assets, please see our project page: https://narcissusex.github.io/VividDreamer.
Abstract:Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements. It allows the subjects exposed to less ionizing radiation, reducing the lifetime risk of developing cancers. Recent researches employ implicit neural representation (INR) techniques to reconstruct CT images from a single SV sinogram. However, due to ill-posedness, these INR-based methods may leave considerable ``holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results. In this paper, we propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction, achieving better reconstruction quality. Specifically, to fill the holes, CoCPF first employs the stripe-based volume sampling module to broaden the sampling regions of Radon transformation from rays (1D space) to stripes (2D space), which can well cover the internal regions between SV projections. Then, by feeding the sampling regions into the proposed differentiable rendering modules, the holes can be jointly optimized during training, reducing the ill-posed levels. As a result, CoCPF can accurately estimate the internal measurements between SV projections (i.e., DV sinograms), producing high-quality CT images after re-projection. Extensive experiments on simulated and real projection datasets demonstrate that CoCPF outperforms state-of-the-art methods for 2D and 3D SVCT reconstructions under various projection numbers and geometries, yielding fine-grained details and fewer artifacts. Our code will be publicly available.
Abstract:Existing person re-identification methods have achieved remarkable advances in appearance-based identity association across homogeneous cameras, such as ground-ground matching. However, as a more practical scenario, aerial-ground person re-identification (AGPReID) among heterogeneous cameras has received minimal attention. To alleviate the disruption of discriminative identity representation by dramatic view discrepancy as the most significant challenge in AGPReID, the view-decoupled transformer (VDT) is proposed as a simple yet effective framework. Two major components are designed in VDT to decouple view-related and view-unrelated features, namely hierarchical subtractive separation and orthogonal loss, where the former separates these two features inside the VDT, and the latter constrains these two to be independent. In addition, we contribute a large-scale AGPReID dataset called CARGO, consisting of five/eight aerial/ground cameras, 5,000 identities, and 108,563 images. Experiments on two datasets show that VDT is a feasible and effective solution for AGPReID, surpassing the previous method on mAP/Rank1 by up to 5.0%/2.7% on CARGO and 3.7%/5.2% on AG-ReID, keeping the same magnitude of computational complexity. Our project is available at https://github.com/LinlyAC/VDT-AGPReID
Abstract:Most diffusion models assume that the reverse process adheres to a Gaussian distribution. However, this approximation has not been rigorously validated, especially at singularities, where t=0 and t=1. Improperly dealing with such singularities leads to an average brightness issue in applications, and limits the generation of images with extreme brightness or darkness. We primarily focus on tackling singularities from both theoretical and practical perspectives. Initially, we establish the error bounds for the reverse process approximation, and showcase its Gaussian characteristics at singularity time steps. Based on this theoretical insight, we confirm the singularity at t=1 is conditionally removable while it at t=0 is an inherent property. Upon these significant conclusions, we propose a novel plug-and-play method SingDiffusion to address the initial singular time step sampling, which not only effectively resolves the average brightness issue for a wide range of diffusion models without extra training efforts, but also enhances their generation capability in achieving notable lower FID scores.
Abstract:Diffusion model is a promising approach to image generation and has been employed for Pose-Guided Person Image Synthesis (PGPIS) with competitive performance. While existing methods simply align the person appearance to the target pose, they are prone to overfitting due to the lack of a high-level semantic understanding on the source person image. In this paper, we propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for PGPIS. In the absence of image-caption pairs and textual prompts, we develop a novel training paradigm purely based on images to control the generation process of the pre-trained text-to-image diffusion model. A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt. This allows for the decoupling of fine-grained appearance and pose information controls at different stages, and thus circumventing the potential overfitting problem. To generate more realistic texture details, a hybrid-granularity attention module is proposed to encode multi-scale fine-grained appearance features as bias terms to augment the coarse-grained prompt. Both quantitative and qualitative experimental results on the DeepFashion benchmark demonstrate the superiority of our method over the state of the arts for PGPIS. Code is available at https://github.com/YanzuoLu/CFLD.
Abstract:Recently, many studies utilized adversarial examples (AEs) to raise the cost of malicious image editing and copyright violation powered by latent diffusion models (LDMs). Despite their successes, a few have studied the surrogate model they used to generate AEs. In this paper, from the perspective of adversarial transferability, we investigate how the surrogate model's property influences the performance of AEs for LDMs. Specifically, we view the time-step sampling in the Monte-Carlo-based (MC-based) adversarial attack as selecting surrogate models. We find that the smoothness of surrogate models at different time steps differs, and we substantially improve the performance of the MC-based AEs by selecting smoother surrogate models. In the light of the theoretical framework on adversarial transferability in image classification, we also conduct a theoretical analysis to explain why smooth surrogate models can also boost AEs for LDMs.
Abstract:Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components. Existing approaches cannot well express fine-grained emotional attributes. In this paper, we propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion. We introduce a two-stage pipeline to effectively train our network: Stage I utilizes inter-speech contrastive learning to model fine-grained emotion and intra-speech disentanglement learning to better separate emotion and content. In Stage II, we propose to regularize the conversion with a multi-view consistency mechanism. This technique helps us transfer fine-grained emotion and maintain speech content. Extensive experiments show that our AINN outperforms state-of-the-arts in both objective and subjective metrics.
Abstract:Universal domain adaptation (UniDA) is a practical but challenging problem, in which information about the relation between the source and the target domains is not given for knowledge transfer. Existing UniDA methods may suffer from the problems of overlooking intra-domain variations in the target domain and difficulty in separating between the similar known and unknown class. To address these issues, we propose a novel Mutual Learning Network (MLNet) with neighborhood invariance for UniDA. In our method, confidence-guided invariant feature learning with self-adaptive neighbor selection is designed to reduce the intra-domain variations for more generalizable feature representation. By using the cross-domain mixup scheme for better unknown-class identification, the proposed method compensates for the misidentified known-class errors by mutual learning between the closed-set and open-set classifiers. Extensive experiments on three publicly available benchmarks demonstrate that our method achieves the best results compared to the state-of-the-arts in most cases and significantly outperforms the baseline across all the four settings in UniDA. Code is available at https://github.com/YanzuoLu/MLNet.
Abstract:Continuous diffusion models are commonly acknowledged to display a deterministic probability flow, whereas discrete diffusion models do not. In this paper, we aim to establish the fundamental theory for the probability flow of discrete diffusion models. Specifically, we first prove that the continuous probability flow is the Monge optimal transport map under certain conditions, and also present an equivalent evidence for discrete cases. In view of these findings, we are then able to define the discrete probability flow in line with the principles of optimal transport. Finally, drawing upon our newly established definitions, we propose a novel sampling method that surpasses previous discrete diffusion models in its ability to generate more certain outcomes. Extensive experiments on the synthetic toy dataset and the CIFAR-10 dataset have validated the effectiveness of our proposed discrete probability flow. Code is released at: https://github.com/PangzeCheung/Discrete-Probability-Flow.