Abstract:Recently, many studies utilized adversarial examples (AEs) to raise the cost of malicious image editing and copyright violation powered by latent diffusion models (LDMs). Despite their successes, a few have studied the surrogate model they used to generate AEs. In this paper, from the perspective of adversarial transferability, we investigate how the surrogate model's property influences the performance of AEs for LDMs. Specifically, we view the time-step sampling in the Monte-Carlo-based (MC-based) adversarial attack as selecting surrogate models. We find that the smoothness of surrogate models at different time steps differs, and we substantially improve the performance of the MC-based AEs by selecting smoother surrogate models. In the light of the theoretical framework on adversarial transferability in image classification, we also conduct a theoretical analysis to explain why smooth surrogate models can also boost AEs for LDMs.
Abstract:Since adversarial examples appeared and showed the catastrophic degradation they brought to DNN, many adversarial defense methods have been devised, among which adversarial training is considered the most effective. However, a recent work showed the inequality phenomena in $l_{\infty}$-adversarial training and revealed that the $l_{\infty}$-adversarially trained model is vulnerable when a few important pixels are perturbed by i.i.d. noise or occluded. In this paper, we propose a simple yet effective method called Input Gradient Distillation (IGD) to release the inequality phenomena in $l_{\infty}$-adversarial training. Experiments show that while preserving the model's adversarial robustness, compared to PGDAT, IGD decreases the $l_{\infty}$-adversarially trained model's error rate to inductive noise and inductive occlusion by up to 60\% and 16.53\%, and to noisy images in Imagenet-C by up to 21.11\%. Moreover, we formally explain why the equality of the model's saliency map can improve such robustness.
Abstract:Deep learning techniques have achieved superior performance in computer-aided medical image analysis, yet they are still vulnerable to imperceptible adversarial attacks, resulting in potential misdiagnosis in clinical practice. Oppositely, recent years have also witnessed remarkable progress in defense against these tailored adversarial examples in deep medical diagnosis systems. In this exposition, we present a comprehensive survey on recent advances in adversarial attack and defense for medical image analysis with a novel taxonomy in terms of the application scenario. We also provide a unified theoretical framework for different types of adversarial attack and defense methods for medical image analysis. For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models obtained by adversarial training under various scenarios. To the best of our knowledge, this is the first survey paper that provides a thorough evaluation of adversarially robust medical diagnosis models. By analyzing qualitative and quantitative results, we conclude this survey with a detailed discussion of current challenges for adversarial attack and defense in medical image analysis systems to shed light on future research directions.