Abstract:Deep networks can usually depend on extracting more structural information to improve denoising results. However, they may ignore correlation between pixels from an image to pursue better denoising performance. Window transformer can use long- and short-distance modeling to interact pixels to address mentioned problem. To make a tradeoff between distance modeling and denoising time, we propose a heterogeneous window transformer (HWformer) for image denoising. HWformer first designs heterogeneous global windows to capture global context information for improving denoising effects. To build a bridge between long and short-distance modeling, global windows are horizontally and vertically shifted to facilitate diversified information without increasing denoising time. To prevent the information loss phenomenon of independent patches, sparse idea is guided a feed-forward network to extract local information of neighboring patches. The proposed HWformer only takes 30% of popular Restormer in terms of denoising time.
Abstract:Popular convolutional neural networks mainly use paired images in a supervised way for image watermark removal. However, watermarked images do not have reference images in the real world, which results in poor robustness of image watermark removal techniques. In this paper, we propose a self-supervised convolutional neural network (CNN) in image watermark removal (SWCNN). SWCNN uses a self-supervised way to construct reference watermarked images rather than given paired training samples, according to watermark distribution. A heterogeneous U-Net architecture is used to extract more complementary structural information via simple components for image watermark removal. Taking into account texture information, a mixed loss is exploited to improve visual effects of image watermark removal. Besides, a watermark dataset is conducted. Experimental results show that the proposed SWCNN is superior to popular CNNs in image watermark removal.
Abstract:Popular methods usually use a degradation model in a supervised way to learn a watermark removal model. However, it is true that reference images are difficult to obtain in the real world, as well as collected images by cameras suffer from noise. To overcome these drawbacks, we propose a perceptive self-supervised learning network for noisy image watermark removal (PSLNet) in this paper. PSLNet depends on a parallel network to remove noise and watermarks. The upper network uses task decomposition ideas to remove noise and watermarks in sequence. The lower network utilizes the degradation model idea to simultaneously remove noise and watermarks. Specifically, mentioned paired watermark images are obtained in a self supervised way, and paired noisy images (i.e., noisy and reference images) are obtained in a supervised way. To enhance the clarity of obtained images, interacting two sub-networks and fusing obtained clean images are used to improve the effects of image watermark removal in terms of structural information and pixel enhancement. Taking into texture information account, a mixed loss uses obtained images and features to achieve a robust model of noisy image watermark removal. Comprehensive experiments show that our proposed method is very effective in comparison with popular convolutional neural networks (CNNs) for noisy image watermark removal. Codes can be obtained at https://github.com/hellloxiaotian/PSLNet.
Abstract:Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, robustness of obtained models may have challenges in varying scenes. Bigger differences of a network architecture are beneficial to extract more complementary structural information to enhance robustness of an obtained super-resolution model. In this paper, we present a heterogeneous dynamic convolutional network in image super-resolution (HDSRNet). To capture more information, HDSRNet is implemented by a heterogeneous parallel network. The upper network can facilitate more contexture information via stacked heterogeneous blocks to improve effects of image super-resolution. Each heterogeneous block is composed of a combination of a dilated, dynamic, common convolutional layers, ReLU and residual learning operation. It can not only adaptively adjust parameters, according to different inputs, but also prevent long-term dependency problem. The lower network utilizes a symmetric architecture to enhance relations of different layers to mine more structural information, which is complementary with a upper network for image super-resolution. The relevant experimental results show that the proposed HDSRNet is effective to deal with image resolving. The code of HDSRNet can be obtained at https://github.com/hellloxiaotian/HDSRNet.
Abstract:Deep convolutional neural networks (CNNs) depend on feedforward and feedback ways to obtain good performance in image denoising. However, how to obtain effective structural information via CNNs to efficiently represent given noisy images is key for complex scenes. In this paper, we propose a cross Transformer denoising CNN (CTNet) with a serial block (SB), a parallel block (PB), and a residual block (RB) to obtain clean images for complex scenes. A SB uses an enhanced residual architecture to deeply search structural information for image denoising. To avoid loss of key information, PB uses three heterogeneous networks to implement multiple interactions of multi-level features to broadly search for extra information for improving the adaptability of an obtained denoiser for complex scenes. Also, to improve denoising performance, Transformer mechanisms are embedded into the SB and PB to extract complementary salient features for effectively removing noise in terms of pixel relations. Finally, a RB is applied to acquire clean images. Experiments illustrate that our CTNet is superior to some popular denoising methods in terms of real and synthetic image denoising. It is suitable to mobile digital devices, i.e., phones. Codes can be obtained at https://github.com/hellloxiaotian/CTNet.
Abstract:Convolutional neural networks (CNNs) depend on deep network architectures to extract accurate information for image super-resolution. However, obtained information of these CNNs cannot completely express predicted high-quality images for complex scenes. In this paper, we present a dynamic network for image super-resolution (DSRNet), which contains a residual enhancement block, wide enhancement block, feature refinement block and construction block. The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super-resolution. To enhance robustness of obtained super-resolution model for complex scenes, a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super-resolution model for varying scenes. To prevent interference of components in a wide enhancement block, a refinement block utilizes a stacked architecture to accurately learn obtained features. Also, a residual learning operation is embedded in the refinement block to prevent long-term dependency problem. Finally, a construction block is responsible for reconstructing high-quality images. Designed heterogeneous architecture can not only facilitate richer structural information, but also be lightweight, which is suitable for mobile digital devices. Experimental results shows that our method is more competitive in terms of performance and recovering time of image super-resolution and complexity. The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
Abstract:The recurrent neural network has been greatly developed for effectively solving time-varying problems corresponding to complex environments. However, limited by the way of centralized processing, the model performance is greatly affected by factors like the silos problems of the models and data in reality. Therefore, the emergence of distributed artificial intelligence such as federated learning (FL) makes it possible for the dynamic aggregation among models. However, the integration process of FL is still server-dependent, which may cause a great risk to the overall model. Also, it only allows collaboration between homogeneous models, and does not have a good solution for the interaction between heterogeneous models. Therefore, we propose a Distributed Computation Model (DCM) based on the consortium blockchain network to improve the credibility of the overall model and effective coordination among heterogeneous models. In addition, a Distributed Hierarchical Integration (DHI) algorithm is also designed for the global solution process. Within a group, permissioned nodes collect the local models' results from different permissionless nodes and then sends the aggregated results back to all the permissionless nodes to regularize the processing of the local models. After the iteration is completed, the secondary integration of the local results will be performed between permission nodes to obtain the global results. In the experiments, we verify the efficiency of DCM, where the results show that the proposed model outperforms many state-of-the-art models based on a federated learning framework.
Abstract:Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and a residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN.
Abstract:Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image super-resolution (SR) under complex scenes. In this paper, we present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image. Specifically, each heterogeneous group block (HGB) of HGSRCNN uses a heterogeneous architecture containing a symmetric group convolutional block and a complementary convolutional block in a parallel way to enhance internal and external relations of different channels for facilitating richer low-frequency structure information of different types. To prevent appearance of obtained redundant features, a refinement block with signal enhancements in a serial way is designed to filter useless information. To prevent loss of original information, a multi-level enhancement mechanism guides a CNN to achieve a symmetric architecture for promoting expressive ability of HGSRCNN. Besides, a parallel up-sampling mechanism is developed to train a blind SR model. Extensive experiments illustrate that the proposed HGSRCNN has obtained excellent SR performance in terms of both quantitative and qualitative analysis. Codes can be accessed at https://github.com/hellloxiaotian/HGSRCNN.
Abstract:CNNs with strong learning abilities are widely chosen to resolve super-resolution problem. However, CNNs depend on deeper network architectures to improve performance of image super-resolution, which may increase computational cost in general. In this paper, we present an enhanced super-resolution group CNN (ESRGCNN) with a shallow architecture by fully fusing deep and wide channel features to extract more accurate low-frequency information in terms of correlations of different channels in single image super-resolution (SISR). Also, a signal enhancement operation in the ESRGCNN is useful to inherit more long-distance contextual information for resolving long-term dependency. An adaptive up-sampling operation is gathered into a CNN to obtain an image super-resolution model with low-resolution images of different sizes. Extensive experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR performance, complexity, execution speed, image quality evaluation and visual effect in SISR. Code is found at https://github.com/hellloxiaotian/ESRGCNN.