Abstract:Existing debiasing approaches in Visual Question Answering (VQA) primarily focus on enhancing visual learning, integrating auxiliary models, or employing data augmentation strategies. However, these methods exhibit two major drawbacks. First, current debiasing techniques fail to capture the superior relation between images and texts because prevalent learning frameworks do not enable models to extract deeper correlations from highly contrasting samples. Second, they do not assess the relevance between the input question and image during inference, as no prior work has examined the degree of input relevance in debiasing studies. Motivated by these limitations, we propose a novel framework, Optimized Question-Image Relation Learning (QIRL), which employs a generation-based self-supervised learning strategy. Specifically, two modules are introduced to address the aforementioned issues. The Negative Image Generation (NIG) module automatically produces highly irrelevant question-image pairs during training to enhance correlation learning, while the Irrelevant Sample Identification (ISI) module improves model robustness by detecting and filtering irrelevant inputs, thereby reducing prediction errors. Furthermore, to validate our concept of reducing output errors through filtering unrelated question-image inputs, we propose a specialized metric to evaluate the performance of the ISI module. Notably, our approach is model-agnostic and can be integrated with various VQA models. Extensive experiments on VQA-CPv2 and VQA-v2 demonstrate the effectiveness and generalization ability of our method. Among data augmentation strategies, our approach achieves state-of-the-art results.
Abstract:Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs), offering biological plausibility and energy efficiency. Despite these merits, SNNs are frequently hampered by limited capacity and insufficient representation power, yet remain underexplored in remote sensing super-resolution (SR) tasks. In this paper, we first observe that spiking signals exhibit drastic intensity variations across diverse textures, highlighting an active learning state of the neurons. This observation motivates us to apply SNNs for efficient SR of RSIs. Inspired by the success of attention mechanisms in representing salient information, we devise the spiking attention block (SAB), a concise yet effective component that optimizes membrane potentials through inferred attention weights, which, in turn, regulates spiking activity for superior feature representation. Our key contributions include: 1) we bridge the independent modulation between temporal and channel dimensions, facilitating joint feature correlation learning, and 2) we access the global self-similar patterns in large-scale remote sensing imagery to infer spatial attention weights, incorporating effective priors for realistic and faithful reconstruction. Building upon SAB, we proposed SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR, while maintaining high computational efficiency. The code of SpikeSR will be available upon paper acceptance.
Abstract:The lack of occlusion data in commonly used action recognition video datasets limits model robustness and impedes sustained performance improvements. We construct OccludeNet, a large-scale occluded video dataset that includes both real-world and synthetic occlusion scene videos under various natural environments. OccludeNet features dynamic tracking occlusion, static scene occlusion, and multi-view interactive occlusion, addressing existing gaps in data. Our analysis reveals that occlusion impacts action classes differently, with actions involving low scene relevance and partial body visibility experiencing greater accuracy degradation. To overcome the limitations of current occlusion-focused approaches, we propose a structural causal model for occluded scenes and introduce the Causal Action Recognition (CAR) framework, which employs backdoor adjustment and counterfactual reasoning. This framework enhances key actor information, improving model robustness to occlusion. We anticipate that the challenges posed by OccludeNet will stimulate further exploration of causal relations in occlusion scenarios and encourage a reevaluation of class correlations, ultimately promoting sustainable performance improvements. The code and full dataset will be released soon.
Abstract:Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception. Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation. Despite extensive research on unimodal deepfake detection, identifying complex deepfakes through joint analysis of audio and visual streams remains relatively unexplored. To fill this gap, this survey first provides an overview of audiovisual deepfake generation techniques, applications, and their consequences, and then provides a comprehensive review of state-of-the-art methods that combine audio and visual modalities to enhance detection accuracy, summarizing and critically analyzing their strengths and limitations. Furthermore, we discuss existing open source datasets for a deeper understanding, which can contribute to the research community and provide necessary information to beginners who want to analyze deep learning-based audiovisual methods for video forensics. By bridging the gap between unimodal and multimodal approaches, this paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
Abstract:In this paper, we propose TextDestroyer, the first training- and annotation-free method for scene text destruction using a pre-trained diffusion model. Existing scene text removal models require complex annotation and retraining, and may leave faint yet recognizable text information, compromising privacy protection and content concealment. TextDestroyer addresses these issues by employing a three-stage hierarchical process to obtain accurate text masks. Our method scrambles text areas in the latent start code using a Gaussian distribution before reconstruction. During the diffusion denoising process, self-attention key and value are referenced from the original latent to restore the compromised background. Latent codes saved at each inversion step are used for replacement during reconstruction, ensuring perfect background restoration. The advantages of TextDestroyer include: (1) it eliminates labor-intensive data annotation and resource-intensive training; (2) it achieves more thorough text destruction, preventing recognizable traces; and (3) it demonstrates better generalization capabilities, performing well on both real-world scenes and generated images.
Abstract:Adverse weather image restoration aims to remove unwanted degraded artifacts, such as haze, rain, and snow, caused by adverse weather conditions. Existing methods achieve remarkable results for addressing single-weather conditions. However, they face challenges when encountering unpredictable weather conditions, which often happen in real-world scenarios. Although different weather conditions exhibit different degradation patterns, they share common characteristics that are highly related and complementary, such as occlusions caused by degradation patterns, color distortion, and contrast attenuation due to the scattering of atmospheric particles. Therefore, we focus on leveraging common knowledge across multiple weather conditions to restore images in a unified manner. In this paper, we propose a Triplet Attention Network (TANet) to efficiently and effectively address all-in-one adverse weather image restoration. TANet consists of Triplet Attention Block (TAB) that incorporates three types of attention mechanisms: Local Pixel-wise Attention (LPA) and Global Strip-wise Attention (GSA) to address occlusions caused by non-uniform degradation patterns, and Global Distribution Attention (GDA) to address color distortion and contrast attenuation caused by atmospheric phenomena. By leveraging common knowledge shared across different weather conditions, TANet successfully addresses multiple weather conditions in a unified manner. Experimental results show that TANet efficiently and effectively achieves state-of-the-art performance in all-in-one adverse weather image restoration. The source code is available at https://github.com/xhuachris/TANet-ACCV-2024.
Abstract:Recently, the integration of the local modeling capabilities of Convolutional Neural Networks (CNNs) with the global dependency strengths of Transformers has created a sensation in the semantic segmentation community. However, substantial computational workloads and high hardware memory demands remain major obstacles to their further application in real-time scenarios. In this work, we propose a lightweight multiple-information interaction network for real-time semantic segmentation, called LMIINet, which effectively combines CNNs and Transformers while reducing redundant computations and memory footprint. It features Lightweight Feature Interaction Bottleneck (LFIB) modules comprising efficient convolutions that enhance context integration. Additionally, improvements are made to the Flatten Transformer by enhancing local and global feature interaction to capture detailed semantic information. The incorporation of a combination coefficient learning scheme in both LFIB and Transformer blocks facilitates improved feature interaction. Extensive experiments demonstrate that LMIINet excels in balancing accuracy and efficiency. With only 0.72M parameters and 11.74G FLOPs, LMIINet achieves 72.0% mIoU at 100 FPS on the Cityscapes test set and 69.94% mIoU at 160 FPS on the CamVid test dataset using a single RTX2080Ti GPU.
Abstract:Recent advances in VLSI fabrication technology have led to die shrinkage and increased layout density, creating an urgent demand for advanced hotspot detection techniques. However, by taking an object detection network as the backbone, recent learning-based hotspot detectors learn to recognize only the problematic layout patterns in the training data. This fact makes these hotspot detectors difficult to generalize to real-world scenarios. We propose a novel lithography simulator-powered hotspot detection framework to overcome this difficulty. Our framework integrates a lithography simulator with an object detection backbone, merging the extracted latent features from both the simulator and the object detector via well-designed cross-attention blocks. Consequently, the proposed framework can be used to detect potential hotspot regions based on I) the variation of possible circuit shape deformation estimated by the lithography simulator, and ii) the problematic layout patterns already known. To this end, we utilize RetinaNet with a feature pyramid network as the object detection backbone and leverage LithoNet as the lithography simulator. Extensive experiments demonstrate that our proposed simulator-guided hotspot detection framework outperforms previous state-of-the-art methods on real-world data.
Abstract:One common belief is that with complex models and pre-training on large-scale datasets, transformer-based methods for referring expression comprehension (REC) perform much better than existing graph-based methods. We observe that since most graph-based methods adopt an off-the-shelf detector to locate candidate objects (i.e., regions detected by the object detector), they face two challenges that result in subpar performance: (1) the presence of significant noise caused by numerous irrelevant objects during reasoning, and (2) inaccurate localization outcomes attributed to the provided detector. To address these issues, we introduce a plug-and-adapt module guided by sub-expressions, called dynamic gate constraint (DGC), which can adaptively disable irrelevant proposals and their connections in graphs during reasoning. We further introduce an expression-guided regression strategy (EGR) to refine location prediction. Extensive experimental results on the RefCOCO, RefCOCO+, RefCOCOg, Flickr30K, RefClef, and Ref-reasoning datasets demonstrate the effectiveness of the DGC module and the EGR strategy in consistently boosting the performances of various graph-based REC methods. Without any pretaining, the proposed graph-based method achieves better performance than the state-of-the-art (SOTA) transformer-based methods.
Abstract:Online Domain Adaptation (OnDA) is designed to handle unforeseeable domain changes at minimal cost that occur during the deployment of the model, lacking clear boundaries between the domain, such as sudden weather events. However, existing OnDA methods that rely solely on the model itself to adapt to the current domain often misidentify ambiguous classes amidst continuous domain shifts and pass on this erroneous knowledge to the next domain. To tackle this, we propose \textbf{RODASS}, a \textbf{R}obust \textbf{O}nline \textbf{D}omain \textbf{A}daptive \textbf{S}emantic \textbf{S}egmentation framework, which dynamically detects domain shifts and adjusts hyper-parameters to minimize training costs and error propagation. Specifically, we introduce the \textbf{D}ynamic \textbf{A}mbiguous \textbf{P}atch \textbf{Mask} (\textbf{DAP Mask}) strategy, which dynamically selects highly disturbed regions and masks these regions, mitigating error accumulation in ambiguous classes and enhancing the model's robustness against external noise in dynamic natural environments. Additionally, we present the \textbf{D}ynamic \textbf{S}ource \textbf{C}lass \textbf{Mix} (\textbf{DSC Mix}), a domain-aware mix method that augments target domain scenes with class-level source buffers, reducing the high uncertainty and noisy labels, thereby accelerating adaptation and offering a more efficient solution for online domain adaptation. Our approach outperforms state-of-the-art methods on widely used OnDA benchmarks while maintaining approximately 40 frames per second (FPS).