Abstract:Cloth-changing person re-identification (CC-ReID) aims to match individuals across multiple surveillance cameras despite variations in clothing. Existing methods typically focus on mitigating the effects of clothing changes or enhancing ID-relevant features but often struggle to capture complex semantic information. In this paper, we propose a novel prompt learning framework, Semantic Contextual Integration (SCI), for CC-ReID, which leverages the visual-text representation capabilities of CLIP to minimize the impact of clothing changes and enhance ID-relevant features. Specifically, we introduce Semantic Separation Enhancement (SSE) module, which uses dual learnable text tokens to separately capture confounding and clothing-related semantic information, effectively isolating ID-relevant features from distracting clothing semantics. Additionally, we develop a Semantic-Guided Interaction Module (SIM) that uses orthogonalized text features to guide visual representations, sharpening the model's focus on distinctive ID characteristics. This integration enhances the model's discriminative power and enriches the visual context with high-dimensional semantic insights. Extensive experiments on three CC-ReID datasets demonstrate that our method outperforms state-of-the-art techniques. The code will be released at github.
Abstract:The lack of occlusion data in commonly used action recognition video datasets limits model robustness and impedes sustained performance improvements. We construct OccludeNet, a large-scale occluded video dataset that includes both real-world and synthetic occlusion scene videos under various natural environments. OccludeNet features dynamic tracking occlusion, static scene occlusion, and multi-view interactive occlusion, addressing existing gaps in data. Our analysis reveals that occlusion impacts action classes differently, with actions involving low scene relevance and partial body visibility experiencing greater accuracy degradation. To overcome the limitations of current occlusion-focused approaches, we propose a structural causal model for occluded scenes and introduce the Causal Action Recognition (CAR) framework, which employs backdoor adjustment and counterfactual reasoning. This framework enhances key actor information, improving model robustness to occlusion. We anticipate that the challenges posed by OccludeNet will stimulate further exploration of causal relations in occlusion scenarios and encourage a reevaluation of class correlations, ultimately promoting sustainable performance improvements. The code and full dataset will be released soon.
Abstract:The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic dataset that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense.
Abstract:CNNs and Self attention have achieved great success in multimedia applications for dynamic association learning of self-attention and convolution in image restoration. However, CNNs have at least two shortcomings: 1) limited receptive field; 2) static weight of sliding window at inference, unable to cope with the content diversity.In view of the advantages and disadvantages of CNNs and Self attention, this paper proposes an association learning method to utilize the advantages and suppress their shortcomings, so as to achieve high-quality and efficient inpainting. We regard rain distribution reflects the degradation location and degree, in addition to the rain distribution prediction. Thus, we propose to refine background textures with the predicted degradation prior in an association learning manner. As a result, we accomplish image deraining by associating rain streak removal and background recovery, where an image deraining network and a background recovery network are designed for two subtasks. The key part of association learning is a novel multi-input attention module. It generates the degradation prior and produces the degradation mask according to the predicted rainy distribution. Benefited from the global correlation calculation of SA, MAM can extract the informative complementary components from the rainy input with the degradation mask, and then help accurate texture restoration. Meanwhile, SA tends to aggregate feature maps with self-attention importance, but convolution diversifies them to focus on the local textures. A hybrid fusion network involves one residual Transformer branch and one encoder-decoder branch. The former takes a few learnable tokens as input and stacks multi-head attention and feed-forward networks to encode global features of the image. The latter, conversely, leverages the multi-scale encoder-decoder to represent contexture knowledge.
Abstract:Few-shot learning is a challenging problem that has attracted more and more attention recently since abundant training samples are difficult to obtain in practical applications. Meta-learning has been proposed to address this issue, which focuses on quickly adapting a predictor as a base-learner to new tasks, given limited labeled samples. However, a critical challenge for meta-learning is the representation deficiency since it is hard to discover common information from a small number of training samples or even one, as is the representation of key features from such little information. As a result, a meta-learner cannot be trained well in a high-dimensional parameter space to generalize to new tasks. Existing methods mostly resort to extracting less expressive features so as to avoid the representation deficiency. Aiming at learning better representations, we propose a meta-learning approach with complemented representations network (MCRNet) for few-shot image classification. In particular, we embed a latent space, where latent codes are reconstructed with extra representation information to complement the representation deficiency. Furthermore, the latent space is established with variational inference, collaborating well with different base-learners, and can be extended to other models. Finally, our end-to-end framework achieves the state-of-the-art performance in image classification on three standard few-shot learning datasets.