Abstract:The sharp increase in data-related expenses has motivated research into condensing datasets while retaining the most informative features. Dataset distillation has thus recently come to the fore. This paradigm generates synthetic dataset that are representative enough to replace the original dataset in training a neural network. To avoid redundancy in these synthetic datasets, it is crucial that each element contains unique features and remains diverse from others during the synthesis stage. In this paper, we provide a thorough theoretical and empirical analysis of diversity within synthesized datasets. We argue that enhancing diversity can improve the parallelizable yet isolated synthesizing approach. Specifically, we introduce a novel method that employs dynamic and directed weight adjustment techniques to modulate the synthesis process, thereby maximizing the representativeness and diversity of each synthetic instance. Our method ensures that each batch of synthetic data mirrors the characteristics of a large, varying subset of the original dataset. Extensive experiments across multiple datasets, including CIFAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of our method, highlighting its effectiveness in producing diverse and representative synthetic datasets with minimal computational expense.
Abstract:We propose a novel method, VectorPainter, for the task of stylized vector graphics synthesis. Given a text prompt and a reference style image, VectorPainter generates a vector graphic that aligns in content with the text prompt and remains faithful in style to the reference image. We recognize that the key to this task lies in fully leveraging the intrinsic properties of vector graphics. Innovatively, we conceptualize the stylization process as the rearrangement of vectorized strokes extracted from the reference image. VectorPainter employs an optimization-based pipeline. It begins by extracting vectorized strokes from the reference image, which are then used to initialize the synthesis process. To ensure fidelity to the reference style, a novel style preservation loss is introduced. Extensive experiments have been conducted to demonstrate that our method is capable of aligning with the text description while remaining faithful to the reference image.