Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, 310022, China, Hangzhou Institute of Medicine, Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China, Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou, 310000, China, Wenling Medical Big Data and Artificial Intelligence Research Institute, 24th Floor, Machang Road, Taizhou, 310061, China, Taizhou Key Laboratory of Minimally Invasive Interventional Therapy and Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
Abstract:The rapid advancement of text-to-image (T2I) diffusion models has enabled them to generate unprecedented results from given texts. However, as text inputs become longer, existing encoding methods like CLIP face limitations, and aligning the generated images with long texts becomes challenging. To tackle these issues, we propose LongAlign, which includes a segment-level encoding method for processing long texts and a decomposed preference optimization method for effective alignment training. For segment-level encoding, long texts are divided into multiple segments and processed separately. This method overcomes the maximum input length limits of pretrained encoding models. For preference optimization, we provide decomposed CLIP-based preference models to fine-tune diffusion models. Specifically, to utilize CLIP-based preference models for T2I alignment, we delve into their scoring mechanisms and find that the preference scores can be decomposed into two components: a text-relevant part that measures T2I alignment and a text-irrelevant part that assesses other visual aspects of human preference. Additionally, we find that the text-irrelevant part contributes to a common overfitting problem during fine-tuning. To address this, we propose a reweighting strategy that assigns different weights to these two components, thereby reducing overfitting and enhancing alignment. After fine-tuning $512 \times 512$ Stable Diffusion (SD) v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger foundation models in T2I alignment, such as PixArt-$\alpha$ and Kandinsky v2.2. The code is available at https://github.com/luping-liu/LongAlign.
Abstract:Object parts serve as crucial intermediate representations in various downstream tasks, but part-level representation learning still has not received as much attention as other vision tasks. Previous research has established that Vision Transformer can learn instance-level attention without labels, extracting high-quality instance-level representations for boosting downstream tasks. In this paper, we achieve unsupervised part-specific attention learning using a novel paradigm and further employ the part representations to improve part discovery performance. Specifically, paired images are generated from the same image with different geometric transformations, and multiple part representations are extracted from these paired images using a novel module, named PartFormer. These part representations from the paired images are then exchanged to improve geometric transformation invariance. Subsequently, the part representations are aligned with the feature map extracted by a feature map encoder, achieving high similarity with the pixel representations of the corresponding part regions and low similarity in irrelevant regions. Finally, the geometric and semantic constraints are applied to the part representations through the intermediate results in alignment for part-specific attention learning, encouraging the PartFormer to focus locally and the part representations to explicitly include the information of the corresponding parts. Moreover, the aligned part representations can further serve as a series of reliable detectors in the testing phase, predicting pixel masks for part discovery. Extensive experiments are carried out on four widely used datasets, and our results demonstrate that the proposed method achieves competitive performance and robustness due to its part-specific attention.
Abstract:Point cloud analysis has seen substantial advancements due to deep learning, although previous Transformer-based methods excel at modeling long-range dependencies on this task, their computational demands are substantial. Conversely, the Mamba offers greater efficiency but shows limited potential compared with Transformer-based methods. In this study, we introduce PoinTramba, a pioneering hybrid framework that synergies the analytical power of Transformer with the remarkable computational efficiency of Mamba for enhanced point cloud analysis. Specifically, our approach first segments point clouds into groups, where the Transformer meticulously captures intricate intra-group dependencies and produces group embeddings, whose inter-group relationships will be simultaneously and adeptly captured by efficient Mamba architecture, ensuring comprehensive analysis. Unlike previous Mamba approaches, we introduce a bi-directional importance-aware ordering (BIO) strategy to tackle the challenges of random ordering effects. This innovative strategy intelligently reorders group embeddings based on their calculated importance scores, significantly enhancing Mamba's performance and optimizing the overall analytical process. Our framework achieves a superior balance between computational efficiency and analytical performance by seamlessly integrating these advanced techniques, marking a substantial leap forward in point cloud analysis. Extensive experiments on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our approach, establishing a new state-of-the-art analysis benchmark on point cloud recognition. For the first time, this paradigm leverages the combined strengths of both Transformer and Mamba architectures, facilitating a new standard in the field. The code is available at https://github.com/xiaoyao3302/PoinTramba.
Abstract:Content-adaptive compression is crucial for enhancing the adaptability of the pre-trained neural codec for various contents. Although these methods have been very practical in neural image compression (NIC), their application in neural video compression (NVC) is still limited due to two main aspects: 1), video compression relies heavily on temporal redundancy, therefore updating just one or a few frames can lead to significant errors accumulating over time; 2), NVC frameworks are generally more complex, with many large components that are not easy to update quickly during encoding. To address the previously mentioned challenges, we have developed a content-adaptive NVC technique called Group-aware Parameter-Efficient Updating (GPU). Initially, to minimize error accumulation, we adopt a group-aware approach for updating encoder parameters. This involves adopting a patch-based Group of Pictures (GoP) training strategy to segment a video into patch-based GoPs, which will be updated to facilitate a globally optimized domain-transferable solution. Subsequently, we introduce a parameter-efficient delta-tuning strategy, which is achieved by integrating several light-weight adapters into each coding component of the encoding process by both serial and parallel configuration. Such architecture-agnostic modules stimulate the components with large parameters, thereby reducing both the update cost and the encoding time. We incorporate our GPU into the latest NVC framework and conduct comprehensive experiments, whose results showcase outstanding video compression efficiency across four video benchmarks and adaptability of one medical image benchmark.
Abstract:NeRF (Neural Radiance Fields) has demonstrated tremendous potential in novel view synthesis and 3D reconstruction, but its performance is sensitive to input image quality, which struggles to achieve high-fidelity rendering when provided with low-quality sparse input viewpoints. Previous methods for NeRF restoration are tailored for specific degradation type, ignoring the generality of restoration. To overcome this limitation, we propose a generic radiance fields restoration pipeline, named RaFE, which applies to various types of degradations, such as low resolution, blurriness, noise, compression artifacts, or their combinations. Our approach leverages the success of off-the-shelf 2D restoration methods to recover the multi-view images individually. Instead of reconstructing a blurred NeRF by averaging inconsistencies, we introduce a novel approach using Generative Adversarial Networks (GANs) for NeRF generation to better accommodate the geometric and appearance inconsistencies present in the multi-view images. Specifically, we adopt a two-level tri-plane architecture, where the coarse level remains fixed to represent the low-quality NeRF, and a fine-level residual tri-plane to be added to the coarse level is modeled as a distribution with GAN to capture potential variations in restoration. We validate RaFE on both synthetic and real cases for various restoration tasks, demonstrating superior performance in both quantitative and qualitative evaluations, surpassing other 3D restoration methods specific to single task. Please see our project website https://zkaiwu.github.io/RaFE-Project/.
Abstract:The year 2023 marked a significant surge in the exploration of applying large language model (LLM) chatbots, notably ChatGPT, across various disciplines. We surveyed the applications of ChatGPT in various sectors of bioinformatics and biomedical informatics throughout the year, covering omics, genetics, biomedical text mining, drug discovery, biomedical image understanding, bioinformatics programming, and bioinformatics education. Our survey delineates the current strengths and limitations of this chatbot in bioinformatics and offers insights into potential avenues for future development.
Abstract:An artificial intelligence-generated content-enhanced computer-aided diagnosis (AIGC-CAD) model, designated as ThyGPT, has been developed. This model, inspired by the architecture of ChatGPT, could assist radiologists in assessing the risk of thyroid nodules through semantic-level human-machine interaction. A dataset comprising 19,165 thyroid nodule ultrasound cases from Zhejiang Cancer Hospital was assembled to facilitate the training and validation of the model. After training, ThyGPT could automatically evaluate thyroid nodule and engage in effective communication with physicians through human-computer interaction. The performance of ThyGPT was rigorously quantified using established metrics such as the receiver operating characteristic (ROC) curve, area under the curve (AUC), sensitivity, and specificity. The empirical findings revealed that radiologists, when supplemented with ThyGPT, markedly surpassed the diagnostic acumen of their peers utilizing traditional methods as well as the performance of the model in isolation. These findings suggest that AIGC-CAD systems, exemplified by ThyGPT, hold the promise to fundamentally transform the diagnostic workflows of radiologists in forthcoming years.
Abstract:Deep learning models have the ability to extract rich knowledge from large-scale datasets. However, the sharing of data has become increasingly challenging due to concerns regarding data copyright and privacy. Consequently, this hampers the effective transfer of knowledge from existing data to novel downstream tasks and concepts. Zero-shot learning (ZSL) approaches aim to recognize new classes by transferring semantic knowledge learned from base classes. However, traditional generative ZSL methods often require access to real images from base classes and rely on manually annotated attributes, which presents challenges in terms of data restrictions and model scalability. To this end, this paper tackles a challenging and practical problem dubbed as data-free zero-shot learning (DFZSL), where only the CLIP-based base classes data pre-trained classifier is available for zero-shot classification. Specifically, we propose a generic framework for DFZSL, which consists of three main components. Firstly, to recover the virtual features of the base data, we model the CLIP features of base class images as samples from a von Mises-Fisher (vMF) distribution based on the pre-trained classifier. Secondly, we leverage the text features of CLIP as low-cost semantic information and propose a feature-language prompt tuning (FLPT) method to further align the virtual image features and textual features. Thirdly, we train a conditional generative model using the well-aligned virtual image features and corresponding semantic text features, enabling the generation of new classes features and achieve better zero-shot generalization. Our framework has been evaluated on five commonly used benchmarks for generalized ZSL, as well as 11 benchmarks for the base-to-new ZSL. The results demonstrate the superiority and effectiveness of our approach. Our code is available in https://github.com/ylong4/DFZSL
Abstract:Deep Neural Networks (DNN) have emerged as an effective approach to tackling real-world problems. However, like human-written software, DNNs are susceptible to bugs and attacks. This has generated significant interests in developing effective and scalable DNN verification techniques and tools. In this paper, we present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach. VeriStable leverages the insight that while neuron behavior may be non-linear across the entire DNN input space, at intermediate states computed during verification many neurons may be constrained to have linear behavior - these neurons are stable. Efficiently detecting stable neurons reduces combinatorial complexity without compromising the precision of abstractions. Moreover, the structure of clauses arising in DNN verification problems shares important characteristics with industrial SAT benchmarks. We adapt and incorporate multi-threading and restart optimizations targeting those characteristics to further optimize DPLL-based DNN verification. We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feedforward networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets) applied to the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable is competitive and outperforms state-of-the-art DNN verification tools, including $\alpha$-$\beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.