Abstract:Molecular docking enables virtual screening of compound libraries to identify potential ligands that target proteins of interest, a crucial step in drug development; however, as the size of the compound library increases, the computational complexity of traditional docking models increases. Deep learning algorithms can provide data-driven research and development models to increase the speed of the docking process. Unfortunately, few models can achieve superior screening performance compared to that of traditional models. Therefore, a novel deep learning-based docking approach named Dockformer is introduced in this study. Dockformer leverages multimodal information to capture the geometric topology and structural knowledge of molecules and can directly generate binding conformations with the corresponding confidence measures in an end-to-end manner. The experimental results show that Dockformer achieves success rates of 90.53\% and 82.71\% on the PDBbind core set and PoseBusters benchmarks, respectively, and more than a 100-fold increase in the inference process speed, outperforming almost all state-of-the-art docking methods. In addition, the ability of Dockformer to identify the main protease inhibitors of coronaviruses is demonstrated in a real-world virtual screening scenario. Considering its high docking accuracy and screening efficiency, Dockformer can be regarded as a powerful and robust tool in the field of drug design.
Abstract:Direction of arrival (DOA) estimation employing low-resolution analog-to-digital convertors (ADCs) has emerged as a challenging and intriguing problem, particularly with the rise in popularity of large-scale arrays. The substantial quantization distortion complicates the extraction of signal and noise subspaces from the quantized data. To address this issue, this paper introduces a novel approach that leverages the Transformer model to aid the subspace estimation. In this model, multiple snapshots are processed in parallel, enabling the capture of global correlations that span them. The learned subspace empowers us to construct the MUSIC spectrum and perform gridless DOA estimation using a neural network-based peak finder. Additionally, the acquired subspace encodes the vital information of model order, allowing us to determine the exact number of sources. These integrated components form a unified algorithmic framework referred to as TransMUSIC. Numerical results demonstrate the superiority of the TransMUSIC algorithm, even when dealing with one-bit quantized data. The results highlight the potential of Transformer-based techniques in DOA estimation.