School of Electrical and Information Engineering, The University of Sydney, Australia
Abstract:Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM's prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs.
Abstract:Global Station Weather Forecasting (GSWF) is crucial for various sectors, including aviation, agriculture, energy, and disaster preparedness. Recent advancements in deep learning have significantly improved the accuracy of weather predictions by optimizing models based on public meteorological data. However, existing public datasets for GSWF optimization and benchmarking still suffer from significant limitations, such as small sizes, limited temporal coverage, and a lack of comprehensive variables. These shortcomings prevent them from effectively reflecting the benchmarks of current forecasting methods and fail to support the real needs of operational weather forecasting. To address these challenges, we present the WEATHER-5K dataset. This dataset comprises a comprehensive collection of data from 5,672 weather stations worldwide, spanning a 10-year period with one-hour intervals. It includes multiple crucial weather elements, providing a more reliable and interpretable resource for forecasting. Furthermore, our WEATHER-5K dataset can serve as a benchmark for comprehensively evaluating existing well-known forecasting models, extending beyond GSWF methods to support future time-series research challenges and opportunities. The dataset and benchmark implementation are publicly available at: https://github.com/taohan10200/WEATHER-5K.
Abstract:Point cloud compression has garnered significant interest in computer vision. However, existing algorithms primarily cater to human vision, while most point cloud data is utilized for machine vision tasks. To address this, we propose a point cloud compression framework that simultaneously handles both human and machine vision tasks. Our framework learns a scalable bit-stream, using only subsets for different machine vision tasks to save bit-rate, while employing the entire bit-stream for human vision tasks. Building on mainstream octree-based frameworks like VoxelContext-Net, OctAttention, and G-PCC, we introduce a new octree depth-level predictor. This predictor adaptively determines the optimal depth level for each octree constructed from a point cloud, controlling the bit-rate for machine vision tasks. For simpler tasks (\textit{e.g.}, classification) or objects/scenarios, we use fewer depth levels with fewer bits, saving bit-rate. Conversely, for more complex tasks (\textit{e.g}., segmentation) or objects/scenarios, we use deeper depth levels with more bits to enhance performance. Experimental results on various datasets (\textit{e.g}., ModelNet10, ModelNet40, ShapeNet, ScanNet, and KITTI) show that our point cloud compression approach improves performance for machine vision tasks without compromising human vision quality.
Abstract:Point cloud analysis has seen substantial advancements due to deep learning, although previous Transformer-based methods excel at modeling long-range dependencies on this task, their computational demands are substantial. Conversely, the Mamba offers greater efficiency but shows limited potential compared with Transformer-based methods. In this study, we introduce PoinTramba, a pioneering hybrid framework that synergies the analytical power of Transformer with the remarkable computational efficiency of Mamba for enhanced point cloud analysis. Specifically, our approach first segments point clouds into groups, where the Transformer meticulously captures intricate intra-group dependencies and produces group embeddings, whose inter-group relationships will be simultaneously and adeptly captured by efficient Mamba architecture, ensuring comprehensive analysis. Unlike previous Mamba approaches, we introduce a bi-directional importance-aware ordering (BIO) strategy to tackle the challenges of random ordering effects. This innovative strategy intelligently reorders group embeddings based on their calculated importance scores, significantly enhancing Mamba's performance and optimizing the overall analytical process. Our framework achieves a superior balance between computational efficiency and analytical performance by seamlessly integrating these advanced techniques, marking a substantial leap forward in point cloud analysis. Extensive experiments on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our approach, establishing a new state-of-the-art analysis benchmark on point cloud recognition. For the first time, this paradigm leverages the combined strengths of both Transformer and Mamba architectures, facilitating a new standard in the field. The code is available at https://github.com/xiaoyao3302/PoinTramba.
Abstract:The advent of data-driven weather forecasting models, which learn from hundreds of terabytes (TB) of reanalysis data, has significantly advanced forecasting capabilities. However, the substantial costs associated with data storage and transmission present a major challenge for data providers and users, affecting resource-constrained researchers and limiting their accessibility to participate in AI-based meteorological research. To mitigate this issue, we introduce an efficient neural codec, the Variational Autoencoder Transformer (VAEformer), for extreme compression of climate data to significantly reduce data storage cost, making AI-based meteorological research portable to researchers. Our approach diverges from recent complex neural codecs by utilizing a low-complexity Auto-Encoder transformer. This encoder produces a quantized latent representation through variance inference, which reparameterizes the latent space as a Gaussian distribution. This method improves the estimation of distributions for cross-entropy coding. Extensive experiments demonstrate that our VAEformer outperforms existing state-of-the-art compression methods in the context of climate data. By applying our VAEformer, we compressed the most popular ERA5 climate dataset (226 TB) into a new dataset, CRA5 (0.7 TB). This translates to a compression ratio of over 300 while retaining the dataset's utility for accurate scientific analysis. Further, downstream experiments show that global weather forecasting models trained on the compact CRA5 dataset achieve forecasting accuracy comparable to the model trained on the original dataset. Code, the CRA5 dataset, and the pre-trained model are available at https://github.com/taohan10200/CRA5.
Abstract:Content-adaptive compression is crucial for enhancing the adaptability of the pre-trained neural codec for various contents. Although these methods have been very practical in neural image compression (NIC), their application in neural video compression (NVC) is still limited due to two main aspects: 1), video compression relies heavily on temporal redundancy, therefore updating just one or a few frames can lead to significant errors accumulating over time; 2), NVC frameworks are generally more complex, with many large components that are not easy to update quickly during encoding. To address the previously mentioned challenges, we have developed a content-adaptive NVC technique called Group-aware Parameter-Efficient Updating (GPU). Initially, to minimize error accumulation, we adopt a group-aware approach for updating encoder parameters. This involves adopting a patch-based Group of Pictures (GoP) training strategy to segment a video into patch-based GoPs, which will be updated to facilitate a globally optimized domain-transferable solution. Subsequently, we introduce a parameter-efficient delta-tuning strategy, which is achieved by integrating several light-weight adapters into each coding component of the encoding process by both serial and parallel configuration. Such architecture-agnostic modules stimulate the components with large parameters, thereby reducing both the update cost and the encoding time. We incorporate our GPU into the latest NVC framework and conduct comprehensive experiments, whose results showcase outstanding video compression efficiency across four video benchmarks and adaptability of one medical image benchmark.
Abstract:Automated generation of feedback on programming assignments holds significant benefits for programming education, especially when it comes to advanced assignments. Automated Program Repair techniques, especially Large Language Model based approaches, have gained notable recognition for their potential to fix introductory assignments. However, the programs used for evaluation are relatively simple. It remains unclear how existing approaches perform in repairing programs from higher-level programming courses. To address these limitations, we curate a new advanced student assignment dataset named Defects4DS from a higher-level programming course. Subsequently, we identify the challenges related to fixing bugs in advanced assignments. Based on the analysis, we develop a framework called PaR that is powered by the LLM. PaR works in three phases: Peer Solution Selection, Multi-Source Prompt Generation, and Program Repair. Peer Solution Selection identifies the closely related peer programs based on lexical, semantic, and syntactic criteria. Then Multi-Source Prompt Generation adeptly combines multiple sources of information to create a comprehensive and informative prompt for the last Program Repair stage. The evaluation on Defects4DS and another well-investigated ITSP dataset reveals that PaR achieves a new state-of-the-art performance, demonstrating impressive improvements of 19.94% and 15.2% in repair rate compared to prior state-of-the-art LLM- and symbolic-based approaches, respectively
Abstract:Conventional Federated Domain Adaptation (FDA) approaches usually demand an abundance of assumptions, such as label set consistency, which makes them significantly less feasible for real-world situations and introduces security hazards. In this work, we propose a more practical scenario named Universal Federated Domain Adaptation (UFDA). It only requires the black-box model and the label set information of each source domain, while the label sets of different source domains could be inconsistent and the target-domain label set is totally blind. This relaxes the assumptions made by FDA, which are often challenging to meet in real-world cases and diminish model security. To address the UFDA scenario, we propose a corresponding framework called Hot-Learning with Contrastive Label Disambiguation (HCLD), which tackles UFDA's domain shifts and category gaps problem by using one-hot outputs from the black-box models of various source domains. Moreover, to better distinguish the shared and unknown classes, we further present a cluster-level strategy named Mutual-Voting Decision (MVD) to extract robust consensus knowledge across peer classes from both source and target domains. The extensive experiments on three benchmarks demonstrate that our HCLD achieves comparable performance for our UFDA scenario with much fewer assumptions, compared to the previous methodologies with many additional assumptions.
Abstract:Recent neural networks based surface reconstruction can be roughly divided into two categories, one warping templates explicitly and the other representing 3D surfaces implicitly. To enjoy the advantages of both, we propose a novel 3D representation, Neural Vector Fields (NVF), which adopts the explicit learning process to manipulate meshes and implicit unsigned distance function (UDF) representation to break the barriers in resolution and topology. This is achieved by directly predicting the displacements from surface queries and modeling shapes as Vector Fields, rather than relying on network differentiation to obtain direction fields as most existing UDF-based methods do. In this way, our approach is capable of encoding both the distance and the direction fields so that the calculation of direction fields is differentiation-free, circumventing the non-trivial surface extraction step. Furthermore, building upon NVFs, we propose to incorporate two types of shape codebooks, \ie, NVFs (Lite or Ultra), to promote cross-category reconstruction through encoding cross-object priors. Moreover, we propose a new regularization based on analyzing the zero-curl property of NVFs, and implement this through the fully differentiable framework of our NVF (ultra). We evaluate both NVFs on four surface reconstruction scenarios, including watertight vs non-watertight shapes, category-agnostic reconstruction vs category-unseen reconstruction, category-specific, and cross-domain reconstruction.
Abstract:Deep neural networks (DNNs) are widely applied for nowadays 3D surface reconstruction tasks and such methods can be further divided into two categories, which respectively warp templates explicitly by moving vertices or represent 3D surfaces implicitly as signed or unsigned distance functions. Taking advantage of both advanced explicit learning process and powerful representation ability of implicit functions, we propose a novel 3D representation method, Neural Vector Fields (NVF). It not only adopts the explicit learning process to manipulate meshes directly, but also leverages the implicit representation of unsigned distance functions (UDFs) to break the barriers in resolution and topology. Specifically, our method first predicts the displacements from queries towards the surface and models the shapes as \textit{Vector Fields}. Rather than relying on network differentiation to obtain direction fields as most existing UDF-based methods, the produced vector fields encode the distance and direction fields both and mitigate the ambiguity at "ridge" points, such that the calculation of direction fields is straightforward and differentiation-free. The differentiation-free characteristic enables us to further learn a shape codebook via Vector Quantization, which encodes the cross-object priors, accelerates the training procedure, and boosts model generalization on cross-category reconstruction. The extensive experiments on surface reconstruction benchmarks indicate that our method outperforms those state-of-the-art methods in different evaluation scenarios including watertight vs non-watertight shapes, category-specific vs category-agnostic reconstruction, category-unseen reconstruction, and cross-domain reconstruction. Our code will be publicly released.