Abstract:As urban residents demand higher travel quality, vehicle dispatch has become a critical component of online ride-hailing services. However, current vehicle dispatch systems struggle to navigate the complexities of urban traffic dynamics, including unpredictable traffic conditions, diverse driver behaviors, and fluctuating supply and demand patterns. These challenges have resulted in travel difficulties for passengers in certain areas, while many drivers in other areas are unable to secure orders, leading to a decline in the overall quality of urban transportation services. To address these issues, this paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching. GARLIC utilizes multiview graphs to capture hierarchical traffic states, and learns a dynamic reward function that accounts for individual driving behaviors. The framework further integrates a GPT model trained with a custom loss function to enable high-precision predictions and optimize dispatching policies in real-world scenarios. Experiments conducted on two real-world datasets demonstrate that GARLIC effectively aligns with driver behaviors while reducing the empty load rate of vehicles.
Abstract:In recent years, deep learning has increasingly gained attention in the field of traffic prediction. Existing traffic prediction models often rely on GCNs or attention mechanisms with O(N^2) complexity to dynamically extract traffic node features, which lack efficiency and are not lightweight. Additionally, these models typically only utilize historical data for prediction, without considering the impact of the target information on the prediction. To address these issues, we propose a Pattern-Matching Dynamic Memory Network (PM-DMNet). PM-DMNet employs a novel dynamic memory network to capture traffic pattern features with only O(N) complexity, significantly reducing computational overhead while achieving excellent performance. The PM-DMNet also introduces two prediction methods: Recursive Multi-step Prediction (RMP) and Parallel Multi-step Prediction (PMP), which leverage the time features of the prediction targets to assist in the forecasting process. Furthermore, a transfer attention mechanism is integrated into PMP, transforming historical data features to better align with the predicted target states, thereby capturing trend changes more accurately and reducing errors. Extensive experiments demonstrate the superiority of the proposed model over existing benchmarks. The source codes are available at: https://github.com/wengwenchao123/PM-DMNet.
Abstract:Knowledge graphs (KGs) have been widely adopted to mitigate data sparsity and address cold-start issues in recommender systems. While existing KGs-based recommendation methods can predict user preferences and demands, they fall short in generating explicit recommendation paths and lack explainability. As a step beyond the above methods, recent advancements utilize reinforcement learning (RL) to find suitable items for a given user via explainable recommendation paths. However, the performance of these solutions is still limited by the following two points. (1) Lack of ability to capture contextual dependencies from neighboring information. (2) The excessive reliance on short recommendation paths due to efficiency concerns. To surmount these challenges, we propose a category-aware dual-agent reinforcement learning (CADRL) model for explainable recommendations over KGs. Specifically, our model comprises two components: (1) a category-aware gated graph neural network that jointly captures context-aware item representations from neighboring entities and categories, and (2) a dual-agent RL framework where two agents efficiently traverse long paths to search for suitable items. Finally, experimental results show that CADRL outperforms state-of-the-art models in terms of both effectiveness and efficiency on large-scale datasets.
Abstract:Traffic flow prediction is an integral part of an intelligent transportation system and thus fundamental for various traffic-related applications. Buses are an indispensable way of moving for urban residents with fixed routes and schedules, which leads to latent travel regularity. However, human mobility patterns, specifically the complex relationships between bus passengers, are deeply hidden in this fixed mobility mode. Although many models exist to predict traffic flow, human mobility patterns have not been well explored in this regard. To reduce this research gap and learn human mobility knowledge from this fixed travel behaviors, we propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN). Firstly, we construct a novel sharing-stop network to model relationships between passengers based on bus record data. Then, we employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers. Furthermore, to fully utilize Spatio-temporal information, we propose GCN2Flow to predict passenger flow based on various mobility patterns. To the best of our knowledge, this paper is the first work to adopt a multipattern approach to predict the bus passenger flow from graph learning. We design a case study for optimizing routes. Extensive experiments upon a real-world bus dataset demonstrate that MPGCN has potential efficacy in passenger flow prediction and route optimization.
Abstract:This paper elaborates how to identify and evaluate causal factors to improve scientific impact. Currently, analyzing scientific impact can be beneficial to various academic activities including funding application, mentor recommendation, and discovering potential cooperators etc. It is universally acknowledged that high-impact scholars often have more opportunities to receive awards as an encouragement for their hard working. Therefore, scholars spend great efforts in making scientific achievements and improving scientific impact during their academic life. However, what are the determinate factors that control scholars' academic success? The answer to this question can help scholars conduct their research more efficiently. Under this consideration, our paper presents and analyzes the causal factors that are crucial for scholars' academic success. We first propose five major factors including article-centered factors, author-centered factors, venue-centered factors, institution-centered factors, and temporal factors. Then, we apply recent advanced machine learning algorithms and jackknife method to assess the importance of each causal factor. Our empirical results show that author-centered and article-centered factors have the highest relevancy to scholars' future success in the computer science area. Additionally, we discover an interesting phenomenon that the h-index of scholars within the same institution or university are actually very close to each other.
Abstract:Graph Convolutional Networks (GCNs) have achieved impressive performance in a wide variety of areas, attracting considerable attention. The core step of GCNs is the information-passing framework that considers all information from neighbors to the central vertex to be equally important. Such equal importance, however, is inadequate for scale-free networks, where hub vertices propagate more dominant information due to vertex imbalance. In this paper, we propose a novel centrality-based framework named CenGCN to address the inequality of information. This framework first quantifies the similarity between hub vertices and their neighbors by label propagation with hub vertices. Based on this similarity and centrality indices, the framework transforms the graph by increasing or decreasing the weights of edges connecting hub vertices and adding self-connections to vertices. In each non-output layer of the GCN, this framework uses a hub attention mechanism to assign new weights to connected non-hub vertices based on their common information with hub vertices. We present two variants CenGCN\_D and CenGCN\_E, based on degree centrality and eigenvector centrality, respectively. We also conduct comprehensive experiments, including vertex classification, link prediction, vertex clustering, and network visualization. The results demonstrate that the two variants significantly outperform state-of-the-art baselines.
Abstract:Advisor-advisee relationship is important in academic networks due to its universality and necessity. Despite the increasing desire to analyze the career of newcomers, however, the outcomes of different collaboration patterns between advisors and advisees remain unknown. The purpose of this paper is to find out the correlation between advisors' academic characteristics and advisees' academic performance in Computer Science. Employing both quantitative and qualitative analysis, we find that with the increase of advisors' academic age, advisees' performance experiences an initial growth, follows a sustaining stage, and finally ends up with a declining trend. We also discover the phenomenon that accomplished advisors can bring up skilled advisees. We explore the conclusion from two aspects: (1) Advisees mentored by advisors with high academic level have better academic performance than the rest; (2) Advisors with high academic level can raise their advisees' h-index ranking. This work provides new insights on promoting our understanding of the relationship between advisors' academic characteristics and advisees' performance, as well as on advisor choosing.
Abstract:The advisor-advisee relationship represents direct knowledge heritage, and such relationship may not be readily available from academic libraries and search engines. This work aims to discover advisor-advisee relationships hidden behind scientific collaboration networks. For this purpose, we propose a novel model based on Network Representation Learning (NRL), namely Shifu2, which takes the collaboration network as input and the identified advisor-advisee relationship as output. In contrast to existing NRL models, Shifu2 considers not only the network structure but also the semantic information of nodes and edges. Shifu2 encodes nodes and edges into low-dimensional vectors respectively, both of which are then utilized to identify advisor-advisee relationships. Experimental results illustrate improved stability and effectiveness of the proposed model over state-of-the-art methods. In addition, we generate a large-scale academic genealogy dataset by taking advantage of Shifu2.
Abstract:A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.