Abstract:Semantic understanding of popularity bias is a crucial yet underexplored challenge in recommender systems, where popular items are often favored at the expense of niche content. Most existing debiasing methods treat the semantic understanding of popularity bias as a matter of diversity enhancement or long-tail coverage, neglecting the deeper semantic layer that embodies the causal origins of the bias itself. Consequently, such shallow interpretations limit both their debiasing effectiveness and recommendation accuracy. In this paper, we propose FairLRM, a novel framework that bridges the gap in the semantic understanding of popularity bias with Recommendation via Large Language Model (RecLLM). FairLRM decomposes popularity bias into item-side and user-side components, using structured instruction-based prompts to enhance the model's comprehension of both global item distributions and individual user preferences. Unlike traditional methods that rely on surface-level features such as "diversity" or "debiasing", FairLRM improves the model's ability to semantically interpret and address the underlying bias. Through empirical evaluation, we show that FairLRM significantly enhances both fairness and recommendation accuracy, providing a more semantically aware and trustworthy approach to enhance the semantic understanding of popularity bias. The implementation is available at https://github.com/LuoRenqiang/FairLRM.
Abstract:Graph unlearning has emerged as a critical mechanism for supporting sustainable and privacy-preserving social networks, enabling models to remove the influence of deleted nodes and thereby better safeguard user information. However, we observe that existing graph unlearning techniques insufficiently protect sensitive attributes, often leading to degraded algorithmic fairness compared with traditional graph learning methods. To address this gap, we introduce FairGU, a fairness-aware graph unlearning framework designed to preserve both utility and fairness during the unlearning process. FairGU integrates a dedicated fairness-aware module with effective data protection strategies, ensuring that sensitive attributes are neither inadvertently amplified nor structurally exposed when nodes are removed. Through extensive experiments on multiple real-world datasets, we demonstrate that FairGU consistently outperforms state-of-the-art graph unlearning methods and fairness-enhanced graph learning baselines in terms of both accuracy and fairness metrics. Our findings highlight a previously overlooked risk in current unlearning practices and establish FairGU as a robust and equitable solution for the next generation of socially sustainable networked systems. The codes are available at https://github.com/LuoRenqiang/FairGU.
Abstract:Graph Transformers (GTs) are increasingly applied to social network analysis, yet their deployment is often constrained by fairness concerns. This issue is particularly critical in incomplete social networks, where sensitive attributes are frequently missing due to privacy and ethical restrictions. Existing solutions commonly generate these incomplete attributes, which may introduce additional biases and further compromise user privacy. To address this challenge, FairGE (Fair Graph Encoding) is introduced as a fairness-aware framework for GTs in incomplete social networks. Instead of generating sensitive attributes, FairGE encodes fairness directly through spectral graph theory. By leveraging the principal eigenvector to represent structural information and padding incomplete sensitive attributes with zeros to maintain independence, FairGE ensures fairness without data reconstruction. Theoretical analysis demonstrates that the method suppresses the influence of non-principal spectral components, thereby enhancing fairness. Extensive experiments on seven real-world social network datasets confirm that FairGE achieves at least a 16% improvement in both statistical parity and equality of opportunity compared with state-of-the-art baselines. The source code is shown in https://github.com/LuoRenqiang/FairGE.




Abstract:Cognitive diagnosis models (CDMs) are pivotal for creating fine-grained learner profiles in modern intelligent education platforms. However, these models are trained on sensitive student data, raising significant privacy concerns. While membership inference attacks (MIA) have been studied in various domains, their application to CDMs remains a critical research gap, leaving their privacy risks unquantified. This paper is the first to systematically investigate MIA against CDMs. We introduce a novel and realistic grey box threat model that exploits the explainability features of these platforms, where a model's internal knowledge state vectors are exposed to users through visualizations such as radar charts. We demonstrate that these vectors can be accurately reverse-engineered from such visualizations, creating a potent attack surface. Based on this threat model, we propose a profile-based MIA (P-MIA) framework that leverages both the model's final prediction probabilities and the exposed internal knowledge state vectors as features. Extensive experiments on three real-world datasets against mainstream CDMs show that our grey-box attack significantly outperforms standard black-box baselines. Furthermore, we showcase the utility of P-MIA as an auditing tool by successfully evaluating the efficacy of machine unlearning techniques and revealing their limitations.
Abstract:The need to remove specific student data from cognitive diagnosis (CD) models has become a pressing requirement, driven by users' growing assertion of their "right to be forgotten". However, existing CD models are largely designed without privacy considerations and lack effective data unlearning mechanisms. Directly applying general purpose unlearning algorithms is suboptimal, as they struggle to balance unlearning completeness, model utility, and efficiency when confronted with the unique heterogeneous structure of CD models. To address this, our paper presents the first systematic study of the data unlearning problem for CD models, proposing a novel and efficient algorithm: hierarchical importanceguided forgetting (HIF). Our key insight is that parameter importance in CD models exhibits distinct layer wise characteristics. HIF leverages this via an innovative smoothing mechanism that combines individual and layer, level importance, enabling a more precise distinction of parameters associated with the data to be unlearned. Experiments on three real world datasets show that HIF significantly outperforms baselines on key metrics, offering the first effective solution for CD models to respond to user data removal requests and for deploying high-performance, privacy preserving AI systems




Abstract:Graph anomaly detection is a popular and vital task in various real-world scenarios, which has been studied for several decades. Recently, many studies extending deep learning-based methods have shown preferable performance on graph anomaly detection. However, existing methods are lack of efficiency that is definitely necessary for embedded devices. Towards this end, we propose an Efficient Anomaly detection model on heterogeneous Graphs via contrastive LEarning (EAGLE) by contrasting abnormal nodes with normal ones in terms of their distances to the local context. The proposed method first samples instance pairs on meta path-level for contrastive learning. Then, a graph autoencoder-based model is applied to learn informative node embeddings in an unsupervised way, which will be further combined with the discriminator to predict the anomaly scores of nodes. Experimental results show that EAGLE outperforms the state-of-the-art methods on three heterogeneous network datasets.
Abstract:With the arrival of the big data era, mobility profiling has become a viable method of utilizing enormous amounts of mobility data to create an intelligent transportation system. Mobility profiling can extract potential patterns in urban traffic from mobility data and is critical for a variety of traffic-related applications. However, due to the high level of complexity and the huge amount of data, mobility profiling faces huge challenges. Digital Twin (DT) technology paves the way for cost-effective and performance-optimised management by digitally creating a virtual representation of the network to simulate its behaviour. In order to capture the complex spatio-temporal features in traffic scenario, we construct alignment diagrams to assist in completing the spatio-temporal correlation representation and design dilated alignment convolution network (DACN) to learn the fine-grained correlations, i.e., spatio-temporal interactions. We propose a digital twin mobility profiling (DTMP) framework to learn node profiles on a mobility network DT model. Extensive experiments have been conducted upon three real-world datasets. Experimental results demonstrate the effectiveness of DTMP.




Abstract:Multivariate time series anomaly detection (MTAD) plays a vital role in a wide variety of real-world application domains. Over the past few years, MTAD has attracted rapidly increasing attention from both academia and industry. Many deep learning and graph learning models have been developed for effective anomaly detection in multivariate time series data, which enable advanced applications such as smart surveillance and risk management with unprecedented capabilities. Nevertheless, MTAD is facing critical challenges deriving from the dependencies among sensors and variables, which often change over time. To address this issue, we propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data featuring dynamic variable relationships. We combine adaptive graph learning methods with graph attention to generate a global-local graph that can represent both global correlations and dynamic local correlations among sensors. To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module to construct a coupled attention module. In addition, we develop a multilevel encoder-decoder architecture that accommodates reconstruction and prediction tasks to better characterize multivariate time series data. Extensive experiments on real-world datasets have been conducted to evaluate the performance of the proposed CAN approach, and the results show that CAN significantly outperforms state-of-the-art baselines.




Abstract:Traffic flow prediction is an integral part of an intelligent transportation system and thus fundamental for various traffic-related applications. Buses are an indispensable way of moving for urban residents with fixed routes and schedules, which leads to latent travel regularity. However, human mobility patterns, specifically the complex relationships between bus passengers, are deeply hidden in this fixed mobility mode. Although many models exist to predict traffic flow, human mobility patterns have not been well explored in this regard. To reduce this research gap and learn human mobility knowledge from this fixed travel behaviors, we propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN). Firstly, we construct a novel sharing-stop network to model relationships between passengers based on bus record data. Then, we employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers. Furthermore, to fully utilize Spatio-temporal information, we propose GCN2Flow to predict passenger flow based on various mobility patterns. To the best of our knowledge, this paper is the first work to adopt a multipattern approach to predict the bus passenger flow from graph learning. We design a case study for optimizing routes. Extensive experiments upon a real-world bus dataset demonstrate that MPGCN has potential efficacy in passenger flow prediction and route optimization.