Abstract:Electric vehicle charging demand prediction is important for vacant charging pile recommendation and charging infrastructure planning, thus facilitating vehicle electrification and green energy development. The performance of previous spatio-temporal studies is still far from satisfactory because the traditional graphs are difficult to model non-pairwise spatial relationships and multivariate temporal features are not adequately taken into account. To tackle these issues, we propose an attention-based heterogeneous multivariate data fusion approach (AHMDF) for citywide electric vehicle charging demand prediction, which incorporates geo-based clustered hypergraph and multivariate gated Transformer to considers both static and dynamic influences. To learn non-pairwise relationships, we cluster service areas by the types and numbers of points of interest in the areas and develop attentive hypergraph networks accordingly. Graph attention mechanisms are used for information propagation between neighboring areas. Additionally, we improve the Transformer encoder utilizing gated mechanisms so that it can selectively learn dynamic auxiliary information and temporal features. Experiments on an electric vehicle charging benchmark dataset demonstrate the effectiveness of our proposed approach compared with a broad range of competing baselines. Furthermore, we demonstrate the impact of dynamic influences on prediction results in different areas of the city and the effectiveness of our clustering method.
Abstract:The training of large models, involving fine-tuning, faces the scarcity of high-quality data. Compared to the solutions based on centralized data centers, updating large models in the Internet of Things (IoT) faces challenges in coordinating knowledge from distributed clients by using their private and heterogeneous data. To tackle such a challenge, we propose KOALA (Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients) to impel the training of large models in IoT. Since the resources obtained by IoT clients are limited and restricted, it is infeasible to locally execute large models and also update them in a privacy-preserving manner. Therefore, we leverage federated learning and knowledge distillation to update large models through collaboration with their small models, which can run locally at IoT clients to process their private data separately and enable large-small model knowledge transfer through iterative learning between the server and clients. Moreover, to support clients with similar or different computing capacities, KOALA is designed with two kinds of large-small model joint learning modes, namely to be homogeneous or heterogeneous. Experimental results demonstrate that compared to the conventional approach, our method can not only achieve similar training performance but also significantly reduce the need for local storage and computing power resources.
Abstract:Along with the proliferation of electric vehicles (EVs), optimizing the use of EV charging space can significantly alleviate the growing load on intelligent transportation systems. As the foundation to achieve such an optimization, a spatiotemporal method for EV charging demand prediction in urban areas is required. Although several solutions have been proposed by using data-driven deep learning methods, it can be found that these performance-oriented methods may suffer from misinterpretations to correctly handle the reverse relationship between charging demands and prices. To tackle the emerging challenges of training an accurate and interpretable prediction model, this paper proposes a novel approach that enables the integration of graph and temporal attention mechanisms for feature extraction and the usage of physic-informed meta-learning in the model pre-training step for knowledge transfer. Evaluation results on a dataset of 18,013 EV charging piles in Shenzhen, China, show that the proposed approach, named PAG, can achieve state-of-the-art forecasting performance and the ability in understanding the adaptive changes in charging demands caused by price fluctuations.
Abstract:Multivariate time series anomaly detection (MTAD) plays a vital role in a wide variety of real-world application domains. Over the past few years, MTAD has attracted rapidly increasing attention from both academia and industry. Many deep learning and graph learning models have been developed for effective anomaly detection in multivariate time series data, which enable advanced applications such as smart surveillance and risk management with unprecedented capabilities. Nevertheless, MTAD is facing critical challenges deriving from the dependencies among sensors and variables, which often change over time. To address this issue, we propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data featuring dynamic variable relationships. We combine adaptive graph learning methods with graph attention to generate a global-local graph that can represent both global correlations and dynamic local correlations among sensors. To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module to construct a coupled attention module. In addition, we develop a multilevel encoder-decoder architecture that accommodates reconstruction and prediction tasks to better characterize multivariate time series data. Extensive experiments on real-world datasets have been conducted to evaluate the performance of the proposed CAN approach, and the results show that CAN significantly outperforms state-of-the-art baselines.