Abstract:Human trajectory modeling is essential for deciphering movement patterns and supporting advanced applications across various domains. However, existing methods are often tailored to specific tasks and regions, resulting in limitations related to task specificity, regional dependency, and data quality sensitivity. Addressing these challenges requires a universal human trajectory foundation model capable of generalizing and scaling across diverse tasks and geographic contexts. To this end, we propose UniTraj, a Universal human Trajectory foundation model that is task-adaptive, region-independent, and highly generalizable. To further enhance performance, we construct WorldTrace, the first large-scale, high-quality, globally distributed dataset sourced from open web platforms, encompassing 2.45 million trajectories with billions of points across 70 countries. Through multiple resampling and masking strategies designed for pre-training, UniTraj effectively overcomes geographic and task constraints, adapting to heterogeneous data quality. Extensive experiments across multiple trajectory analysis tasks and real-world datasets demonstrate that UniTraj consistently outperforms existing approaches in terms of scalability and adaptability. These results underscore the potential of UniTraj as a versatile, robust solution for a wide range of trajectory analysis applications, with WorldTrace serving as an ideal but non-exclusive foundation for training.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
Abstract:Federated learning (FL), integrating group fairness mechanisms, allows multiple clients to collaboratively train a global model that makes unbiased decisions for different populations grouped by sensitive attributes (e.g., gender and race). Due to its distributed nature, previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks. However, these studies primarily focus on perturbing accuracy, leaving a critical question unexplored: Can an attacker bypass the group fairness mechanisms in FL and manipulate the global model to be biased? The motivations for such an attack vary; an attacker might seek higher accuracy, yet fairness considerations typically limit the accuracy of the global model or aim to cause ethical disruption. To address this question, we design a novel form of attack in FL, termed Profit-driven Fairness Attack (PFATTACK), which aims not to degrade global model accuracy but to bypass fairness mechanisms. Our fundamental insight is that group fairness seeks to weaken the dependence of outputs on input attributes related to sensitive information. In the proposed PFATTACK, an attacker can recover this dependence through local fine-tuning across various sensitive groups, thereby creating a biased yet accuracy-preserving malicious model and injecting it into FL through model replacement. Compared to attacks targeting accuracy, PFATTACK is more stealthy. The malicious model in PFATTACK exhibits subtle parameter variations relative to the original global model, making it robust against detection and filtering by Byzantine-resilient aggregations. Extensive experiments on benchmark datasets are conducted for four fair FL frameworks and three Byzantine-resilient aggregations against model poisoning, demonstrating the effectiveness and stealth of PFATTACK in bypassing group fairness mechanisms in FL.
Abstract:As urban residents demand higher travel quality, vehicle dispatch has become a critical component of online ride-hailing services. However, current vehicle dispatch systems struggle to navigate the complexities of urban traffic dynamics, including unpredictable traffic conditions, diverse driver behaviors, and fluctuating supply and demand patterns. These challenges have resulted in travel difficulties for passengers in certain areas, while many drivers in other areas are unable to secure orders, leading to a decline in the overall quality of urban transportation services. To address these issues, this paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching. GARLIC utilizes multiview graphs to capture hierarchical traffic states, and learns a dynamic reward function that accounts for individual driving behaviors. The framework further integrates a GPT model trained with a custom loss function to enable high-precision predictions and optimize dispatching policies in real-world scenarios. Experiments conducted on two real-world datasets demonstrate that GARLIC effectively aligns with driver behaviors while reducing the empty load rate of vehicles.
Abstract:The Human Mobility Signature Identification (HuMID) problem stands as a fundamental task within the realm of driving style representation, dedicated to discerning latent driving behaviors and preferences from diverse driver trajectories for driver identification. Its solutions hold significant implications across various domains (e.g., ride-hailing, insurance), wherein their application serves to safeguard users and mitigate potential fraudulent activities. Present HuMID solutions often exhibit limitations in adaptability when confronted with lengthy trajectories, consequently incurring substantial computational overhead. Furthermore, their inability to effectively extract crucial local information further impedes their performance. To address this problem, we propose a Siamese Multiple Attention Temporal Convolutional Network (Siamese MA-TCN) to capitalize on the strengths of both TCN architecture and multi-head self-attention, enabling the proficient extraction of both local and long-term dependencies. Additionally, we devise a novel attention mechanism tailored for the efficient aggregation of multi-scale representations derived from our model. Experimental evaluations conducted on two real-world taxi trajectory datasets reveal that our proposed model effectively extracts both local key information and long-term dependencies. These findings highlight the model's outstanding generalization capabilities, demonstrating its robustness and adaptability across datasets of varying sizes.
Abstract:Machine learning models offer the capability to forecast future energy production or consumption and infer essential unknown variables from existing data. However, legal and policy constraints within specific energy sectors render the data sensitive, presenting technical hurdles in utilizing data from diverse sources. Therefore, we propose adopting a Swarm Learning (SL) scheme, which replaces the centralized server with a blockchain-based distributed network to address the security and privacy issues inherent in Federated Learning (FL)'s centralized architecture. Within this distributed Collaborative Learning framework, each participating organization governs nodes for inter-organizational communication. Devices from various organizations utilize smart contracts for parameter uploading and retrieval. Consensus mechanism ensures distributed consistency throughout the learning process, guarantees the transparent trustworthiness and immutability of parameters on-chain. The efficacy of the proposed framework is substantiated across three real-world energy series modeling scenarios with superior performance compared to Local Learning approaches, simultaneously emphasizing enhanced data security and privacy over Centralized Learning and FL method. Notably, as the number of data volume and the count of local epochs increases within a threshold, there is an improvement in model performance accompanied by a reduction in the variance of performance errors. Consequently, this leads to an increased stability and reliability in the outcomes produced by the model.
Abstract:Worldwide geolocalization aims to locate the precise location at the coordinate level of photos taken anywhere on the Earth. It is very challenging due to 1) the difficulty of capturing subtle location-aware visual semantics, and 2) the heterogeneous geographical distribution of image data. As a result, existing studies have clear limitations when scaled to a worldwide context. They may easily confuse distant images with similar visual contents, or cannot adapt to various locations worldwide with different amounts of relevant data. To resolve these limitations, we propose G3, a novel framework based on Retrieval-Augmented Generation (RAG). In particular, G3 consists of three steps, i.e., Geo-alignment, Geo-diversification, and Geo-verification to optimize both retrieval and generation phases of worldwide geolocalization. During Geo-alignment, our solution jointly learns expressive multi-modal representations for images, GPS and textual descriptions, which allows us to capture location-aware semantics for retrieving nearby images for a given query. During Geo-diversification, we leverage a prompt ensembling method that is robust to inconsistent retrieval performance for different image queries. Finally, we combine both retrieved and generated GPS candidates in Geo-verification for location prediction. Experiments on two well-established datasets IM2GPS3k and YFCC4k verify the superiority of G3 compared to other state-of-the-art methods.
Abstract:DNN-based watermarking methods are rapidly developing and delivering impressive performances. Recent advances achieve resolution-agnostic image watermarking by reducing the variant resolution watermarking problem to a fixed resolution watermarking problem. However, such a reduction process can potentially introduce artifacts and low robustness. To address this issue, we propose the first, to the best of our knowledge, Resolution-Agnostic Image WaterMarking (RAIMark) framework by watermarking the implicit neural representation (INR) of image. Unlike previous methods, our method does not rely on the previous reduction process by directly watermarking the continuous signal instead of image pixels, thus achieving resolution-agnostic watermarking. Precisely, given an arbitrary-resolution image, we fit an INR for the target image. As a continuous signal, such an INR can be sampled to obtain images with variant resolutions. Then, we quickly fine-tune the fitted INR to get a watermarked INR conditioned on a binary secret message. A pre-trained watermark decoder extracts the hidden message from any sampled images with arbitrary resolutions. By directly watermarking INR, we achieve resolution-agnostic watermarking with increased robustness. Extensive experiments show that our method outperforms previous methods with significant improvements: averagely improved bit accuracy by 7%$\sim$29%. Notably, we observe that previous methods are vulnerable to at least one watermarking attack (e.g. JPEG, crop, resize), while ours are robust against all watermarking attacks.
Abstract:Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts.