Abstract:Feature selection is crucial in recommender systems for improving model efficiency and predictive performance. Traditional methods rely on agency models, such as decision trees or neural networks, to estimate feature importance. However, this approach is inherently limited, as the agency models may fail to learn effectively in all scenarios due to suboptimal training conditions (e.g., feature collinearity, high-dimensional sparsity, and data insufficiency). In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems. AltFS integrates semantic reasoning from Large Language Models (LLMs) with task-specific learning from agency models. Initially, LLMs will generate a semantic ranking of feature importance, which is then refined by an agency model, combining world knowledge with task-specific insights. Extensive experiments on three public datasets from real-world recommender platforms demonstrate the effectiveness of AltFS. Our code is publicly available for reproducibility.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
Abstract:Sequential Recommender Systems (SRS) are extensively applied across various domains to predict users' next interaction by modeling their interaction sequences. However, these systems typically grapple with the long-tail problem, where they struggle to recommend items that are less popular. This challenge results in a decline in user discovery and reduced earnings for vendors, negatively impacting the system as a whole. Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity, positioning them as a viable solution to this dilemma. In our paper, we present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of SRS. To align the capabilities of general-purpose LLM with the needs of the recommendation domain, we introduce a method called Supervised Contrastive Fine-Tuning (SCFT). This method involves attribute-level data augmentation and a custom contrastive loss designed to tailor LLM for enhanced recommendation performance. Moreover, we highlight the necessity of incorporating collaborative filtering signals into LLM-generated embeddings and propose Recommendation Adaptation Training (RAT) for this purpose. RAT refines the embeddings to be optimally suited for SRS. The embeddings derived from LLMEmb can be easily integrated with any SRS model, showcasing its practical utility. Extensive experimentation on three real-world datasets has shown that LLMEmb significantly improves upon current methods when applied across different SRS models.
Abstract:In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named \textbf{\underline{S}}elect\textbf{\underline{I}}ve \textbf{\underline{G}}ated \textbf{\underline{MA}}mba (SIGMA). This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at \url{https://github.com/ziwliu-cityu/SIMGA} to ease reproducibility.
Abstract:Large language models (LLMs) have garnered increasing attention owing to their powerful logical reasoning capabilities. Generally, larger LLMs (L-LLMs) that require paid interfaces exhibit significantly superior performance compared to smaller LLMs (S-LLMs) that can be deployed on a variety of devices. Knowledge distillation (KD) aims to empower S-LLMs with the capabilities of L-LLMs, while S-LLMs merely mimic the outputs of L-LLMs, failing to get the powerful logical reasoning capabilities. Consequently, S-LLMs are helpless when it comes to planning and decision-making tasks that require logical reasoning capabilities. To tackle the identified challenges, we propose a novel framework called Logic Distillation (LD). Initially, LD employs L-LLMs to instantiate complex instructions into discrete functions and illustrates their usage to establish a function base. Subsequently, based on the function base, LD fine-tunes S-LLMs to learn the logic employed by L-LLMs in planning and decision-making. During testing, LD utilizes a retriever to identify the top-$K$ relevant functions based on instructions and current states, which will be selected and invoked by S-LLMs. Ultimately, S-LLMs yield planning and decision-making outcomes, function by function. Relevant experiments demonstrate that with the assistance of LD, S-LLMs can achieve outstanding results in planning and decision-making tasks, comparable to, or even surpassing, those of L-LLMs.
Abstract:Pretrained large models (PLMs), such as ChatGPT, have demonstrated remarkable performance across diverse tasks. However, the significant computational requirements of PLMs have discouraged most product teams from running or fine-tuning them. In such cases, to harness the exceptional performance of PLMs, one must rely on expensive APIs, thereby exacerbating the economic burden. Despite the overall inferior performance of small models, in specific distributions, they can achieve comparable or even superior results. Consequently, some input can be processed exclusively by small models. On the other hand, certain tasks can be broken down into multiple subtasks, some of which can be completed without powerful capabilities. Under these circumstances, small models can handle the simple subtasks, allowing large models to focus on challenging subtasks, thus improving the performance. We propose Data Shunt$^+$ (DS$^+$), a general paradigm for collaboration of small and large models. DS$^+$ not only substantially reduces the cost associated with querying large models but also effectively improves large models' performance. For instance, ChatGPT achieves an accuracy of $94.43\%$ on Amazon Product sentiment analysis, and DS$^+$ achieves an accuracy of $95.64\%$, while the cost has been reduced to only $31.18\%$. Besides, experiments also prove that the proposed collaborative-based paradigm can better inject specific task knowledge into PLMs compared to fine-tuning.
Abstract:Sequential recommendation systems (SRS) serve the purpose of predicting users' subsequent preferences based on their past interactions and have been applied across various domains such as e-commerce and social networking platforms. However, practical SRS encounters challenges due to the fact that most users engage with only a limited number of items, while the majority of items are seldom consumed. These challenges, termed as the long-tail user and long-tail item dilemmas, often create obstacles for traditional SRS methods. Mitigating these challenges is crucial as they can significantly impact user satisfaction and business profitability. While some research endeavors have alleviated these issues, they still grapple with issues such as seesaw or noise stemming from the scarcity of interactions. The emergence of large language models (LLMs) presents a promising avenue to address these challenges from a semantic standpoint. In this study, we introduce the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR), which leverages semantic embeddings from LLMs to enhance SRS performance without increasing computational overhead. To combat the long-tail item challenge, we propose a dual-view modeling approach that fuses semantic information from LLMs with collaborative signals from traditional SRS. To address the long-tail user challenge, we introduce a retrieval augmented self-distillation technique to refine user preference representations by incorporating richer interaction data from similar users. Through comprehensive experiments conducted on three authentic datasets using three widely used SRS models, our proposed enhancement framework demonstrates superior performance compared to existing methodologies.
Abstract:Multi-domain recommendation and multi-task recommendation have demonstrated their effectiveness in leveraging common information from different domains and objectives for comprehensive user modeling. Nonetheless, the practical recommendation usually faces multiple domains and tasks simultaneously, which cannot be well-addressed by current methods. To this end, we introduce M3oE, an adaptive multi-domain multi-task mixture-of-experts recommendation framework. M3oE integrates multi-domain information, maps knowledge across domains and tasks, and optimizes multiple objectives. We leverage three mixture-of-experts modules to learn common, domain-aspect, and task-aspect user preferences respectively to address the complex dependencies among multiple domains and tasks in a disentangled manner. Additionally, we design a two-level fusion mechanism for precise control over feature extraction and fusion across diverse domains and tasks. The framework's adaptability is further enhanced by applying AutoML technique, which allows dynamic structure optimization. To the best of the authors' knowledge, our M3oE is the first effort to solve multi-domain multi-task recommendation self-adaptively. Extensive experiments on two benchmark datasets against diverse baselines demonstrate M3oE's superior performance. The implementation code is available to ensure reproducibility.
Abstract:Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts.
Abstract:Model editing aims to precisely modify the behaviours of large language models (LLMs) on specific knowledge while keeping irrelevant knowledge unchanged. It has been proven effective in resolving hallucination and out-of-date issues in LLMs. As a result, it can boost the application of LLMs in many critical domains (e.g., medical domain), where the hallucination is not tolerable. In this paper, we propose two model editing studies and validate them in the medical domain: (1) directly editing the factual medical knowledge and (2) editing the explanations to facts. Meanwhile, we observed that current model editing methods struggle with the specialization and complexity of medical knowledge. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. It employs causal tracing to identify the precise location of knowledge in neurons and then introduces scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge. To evaluate the editing impact, we build two benchmark datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting irrelevant knowledge that is not edited.