Abstract:Sequential Recommender Systems (SRS) have become a cornerstone of online platforms, leveraging users' historical interaction data to forecast their next potential engagement. Despite their widespread adoption, SRS often grapple with the long-tail user dilemma, resulting in less effective recommendations for individuals with limited interaction records. The advent of Large Language Models (LLMs), with their profound capability to discern semantic relationships among items, has opened new avenues for enhancing SRS through data augmentation. Nonetheless, current methodologies encounter obstacles, including the absence of collaborative signals and the prevalence of hallucination phenomena.In this work, we present LLMSeR, an innovative framework that utilizes Large Language Models (LLMs) to generate pseudo-prior items, thereby improving the efficacy of Sequential Recommender Systems (SRS). To alleviate the challenge of insufficient collaborative signals, we introduce the Semantic Interaction Augmentor (SIA), a method that integrates both semantic and collaborative information to comprehensively augment user interaction data. Moreover, to weaken the adverse effects of hallucination in SRS, we develop the Adaptive Reliability Validation (ARV), a validation technique designed to assess the reliability of the generated pseudo items. Complementing these advancements, we also devise a Dual-Channel Training strategy, ensuring seamless integration of data augmentation into the SRS training process.Extensive experiments conducted with three widely-used SRS models demonstrate the generalizability and efficacy of LLMSeR.
Abstract:In today's digital landscape, Deep Recommender Systems (DRS) play a crucial role in navigating and customizing online content for individual preferences. However, conventional methods, which mainly depend on single recommendation task, scenario, data modality and user behavior, are increasingly seen as insufficient due to their inability to accurately reflect users' complex and changing preferences. This gap underscores the need for joint modeling approaches, which are central to overcoming these limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process, thus promising significant enhancements in recommendation precision, efficiency, and customization. In this paper, we comprehensively survey the joint modeling methods in recommendations. We begin by defining the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling. Subsequently, we examine these methods in depth, identifying and summarizing their underlying paradigms based on the latest advancements and potential research trajectories. Ultimately, we highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
Abstract:Delivering superior search services is crucial for enhancing customer experience and driving revenue growth. Conventionally, search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship. This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams, uncovering two prevalent yet significant issues: entangled preference and relevance effects, and a collapsed modeling space. To surmount these challenges, our research introduces a novel framework, DRP, which enhances search accuracy through two components to reconstruct the behavior modeling space. Specifically, we implement preference editing to proactively remove the relevance effect from preference predictions, yielding untainted user preferences. Additionally, we employ adaptive fusion, which dynamically adjusts fusion criteria to align with the varying patterns of relevance and preference, facilitating more nuanced and tailored behavior predictions within the reconstructed modeling space. Empirical validation on two public datasets and a proprietary search dataset underscores the superiority of our proposed methodology, demonstrating marked improvements in performance over existing approaches.
Abstract:Medication recommendation is one of the most critical health-related applications, which has attracted extensive research interest recently. Most existing works focus on a single hospital with abundant medical data. However, many small hospitals only have a few records, which hinders applying existing medication recommendation works to the real world. Thus, we seek to explore a more practical setting, i.e., multi-center medication recommendation. In this setting, most hospitals have few records, but the total number of records is large. Though small hospitals may benefit from total affluent records, it is also faced with the challenge that the data distributions between various hospitals are much different. In this work, we introduce a novel conTrastive prEtrain Model with Prompt Tuning (TEMPT) for multi-center medication recommendation, which includes two stages of pretraining and finetuning. We first design two self-supervised tasks for the pretraining stage to learn general medical knowledge. They are mask prediction and contrastive tasks, which extract the intra- and inter-relationships of input diagnosis and procedures. Furthermore, we devise a novel prompt tuning method to capture the specific information of each hospital rather than adopting the common finetuning. On the one hand, the proposed prompt tuning can better learn the heterogeneity of each hospital to fit various distributions. On the other hand, it can also relieve the catastrophic forgetting problem of finetuning. To validate the proposed model, we conduct extensive experiments on the public eICU, a multi-center medical dataset. The experimental results illustrate the effectiveness of our model. The implementation code is available to ease the reproducibility https://github.com/Applied-Machine-Learning-Lab/TEMPT.
Abstract:User simulators can rapidly generate a large volume of timely user behavior data, providing a testing platform for reinforcement learning-based recommender systems, thus accelerating their iteration and optimization. However, prevalent user simulators generally suffer from significant limitations, including the opacity of user preference modeling and the incapability of evaluating simulation accuracy. In this paper, we introduce an LLM-powered user simulator to simulate user engagement with items in an explicit manner, thereby enhancing the efficiency and effectiveness of reinforcement learning-based recommender systems training. Specifically, we identify the explicit logic of user preferences, leverage LLMs to analyze item characteristics and distill user sentiments, and design a logical model to imitate real human engagement. By integrating a statistical model, we further enhance the reliability of the simulation, proposing an ensemble model that synergizes logical and statistical insights for user interaction simulations. Capitalizing on the extensive knowledge and semantic generation capabilities of LLMs, our user simulator faithfully emulates user behaviors and preferences, yielding high-fidelity training data that enrich the training of recommendation algorithms. We establish quantifying and qualifying experiments on five datasets to validate the simulator's effectiveness and stability across various recommendation scenarios.
Abstract:Large Language Model (LLM) has transformative potential in various domains, including recommender systems (RS). There have been a handful of research that focuses on empowering the RS by LLM. However, previous efforts mainly focus on LLM as RS, which may face the challenge of intolerant inference costs by LLM. Recently, the integration of LLM into RS, known as LLM-Enhanced Recommender Systems (LLMERS), has garnered significant interest due to its potential to address latency and memory constraints in real-world applications. This paper presents a comprehensive survey of the latest research efforts aimed at leveraging LLM to enhance RS capabilities. We identify a critical shift in the field with the move towards incorporating LLM into the online system, notably by avoiding their use during inference. Our survey categorizes the existing LLMERS approaches into three primary types based on the component of the RS model being augmented: Knowledge Enhancement, Interaction Enhancement, and Model Enhancement. We provide an in-depth analysis of each category, discussing the methodologies, challenges, and contributions of recent studies. Furthermore, we highlight several promising research directions that could further advance the field of LLMERS.
Abstract:Artificial intelligence (AI) has rapidly developed through advancements in computational power and the growth of massive datasets. However, this progress has also heightened challenges in interpreting the "black-box" nature of AI models. To address these concerns, eXplainable AI (XAI) has emerged with a focus on transparency and interpretability to enhance human understanding and trust in AI decision-making processes. In the context of multimodal data fusion and complex reasoning scenarios, the proposal of Multimodal eXplainable AI (MXAI) integrates multiple modalities for prediction and explanation tasks. Meanwhile, the advent of Large Language Models (LLMs) has led to remarkable breakthroughs in natural language processing, yet their complexity has further exacerbated the issue of MXAI. To gain key insights into the development of MXAI methods and provide crucial guidance for building more transparent, fair, and trustworthy AI systems, we review the MXAI methods from a historical perspective and categorize them across four eras: traditional machine learning, deep learning, discriminative foundation models, and generative LLMs. We also review evaluation metrics and datasets used in MXAI research, concluding with a discussion of future challenges and directions. A project related to this review has been created at https://github.com/ShilinSun/mxai_review.
Abstract:Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.
Abstract:Feature selection is crucial in recommender systems for improving model efficiency and predictive performance. Traditional methods rely on agency models, such as decision trees or neural networks, to estimate feature importance. However, this approach is inherently limited, as the agency models may fail to learn effectively in all scenarios due to suboptimal training conditions (e.g., feature collinearity, high-dimensional sparsity, and data insufficiency). In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems. AltFS integrates semantic reasoning from Large Language Models (LLMs) with task-specific learning from agency models. Initially, LLMs will generate a semantic ranking of feature importance, which is then refined by an agency model, combining world knowledge with task-specific insights. Extensive experiments on three public datasets from real-world recommender platforms demonstrate the effectiveness of AltFS. Our code is publicly available for reproducibility.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.