Marketing and Commercialization Center, JD.com
Abstract:Most current MKGC approaches are predominantly based on discriminative models that maximize conditional likelihood. These approaches struggle to efficiently capture the complex connections in real-world knowledge graphs, thereby limiting their overall performance. To address this issue, we propose a structure-aware multimodal Diffusion model for multimodal knowledge graph Completion (DiffusionCom). DiffusionCom innovatively approaches the problem from the perspective of generative models, modeling the association between the $(head, relation)$ pair and candidate tail entities as their joint probability distribution $p((head, relation), (tail))$, and framing the MKGC task as a process of gradually generating the joint probability distribution from noise. Furthermore, to fully leverage the structural information in MKGs, we propose Structure-MKGformer, an adaptive and structure-aware multimodal knowledge representation learning method, as the encoder for DiffusionCom. Structure-MKGformer captures rich structural information through a multimodal graph attention network (MGAT) and adaptively fuses it with entity representations, thereby enhancing the structural awareness of these representations. This design effectively addresses the limitations of existing MKGC methods, particularly those based on multimodal pre-trained models, in utilizing structural information. DiffusionCom is trained using both generative and discriminative losses for the generator, while the feature extractor is optimized exclusively with discriminative loss. This dual approach allows DiffusionCom to harness the strengths of both generative and discriminative models. Extensive experiments on the FB15k-237-IMG and WN18-IMG datasets demonstrate that DiffusionCom outperforms state-of-the-art models.
Abstract:Ensuring the safety of vulnerable road users through accurate prediction of pedestrian crossing intention (PCI) plays a crucial role in the context of autonomous and assisted driving. Analyzing the set of observation video frames in ego-view has been widely used in most PCI prediction methods to forecast the cross intent. However, they struggle to capture the critical events related to pedestrian behaviour along the temporal dimension due to the high redundancy of the video frames, which results in the sub-optimal performance of PCI prediction. Our research addresses the challenge by introducing a novel approach called \underline{T}emporal-\underline{c}ontextual Event \underline{L}earning (TCL). The TCL is composed of the Temporal Merging Module (TMM), which aims to manage the redundancy by clustering the observed video frames into multiple key temporal events. Then, the Contextual Attention Block (CAB) is employed to adaptively aggregate multiple event features along with visual and non-visual data. By synthesizing the temporal feature extraction and contextual attention on the key information across the critical events, TCL can learn expressive representation for the PCI prediction. Extensive experiments are carried out on three widely adopted datasets, including PIE, JAAD-beh, and JAAD-all. The results show that TCL substantially surpasses the state-of-the-art methods. Our code can be accessed at https://github.com/dadaguailhb/TCL.
Abstract:Offline reinforcement learning (RL) enables policy training solely on pre-collected data, avoiding direct environment interaction - a crucial benefit for energy-constrained embodied AI applications. Although Artificial Neural Networks (ANN)-based methods perform well in offline RL, their high computational and energy demands motivate exploration of more efficient alternatives. Spiking Neural Networks (SNNs) show promise for such tasks, given their low power consumption. In this work, we introduce DSFormer, the first spike-driven transformer model designed to tackle offline RL via sequence modeling. Unlike existing SNN transformers focused on spatial dimensions for vision tasks, we develop Temporal Spiking Self-Attention (TSSA) and Positional Spiking Self-Attention (PSSA) in DSFormer to capture the temporal and positional dependencies essential for sequence modeling in RL. Additionally, we propose Progressive Threshold-dependent Batch Normalization (PTBN), which combines the benefits of LayerNorm and BatchNorm to preserve temporal dependencies while maintaining the spiking nature of SNNs. Comprehensive results in the D4RL benchmark show DSFormer's superiority over both SNN and ANN counterparts, achieving 78.4% energy savings, highlighting DSFormer's advantages not only in energy efficiency but also in competitive performance. Code and models are public at https://wei-nijuan.github.io/DecisionSpikeFormer.
Abstract:The traditional method for designing branch-line couplers involves a trial-and-error optimization process that requires multiple design iterations through electromagnetic (EM) simulations. Thus, it is extremely time consuming and labor intensive. In this paper, a novel machine-learning-based framework is proposed to tackle this issue. It integrates artificial neural networks with a self-adaptive differential evolution algorithm (ANNs-SaDE). This framework enables the self-adaptive design of various types of microwave branch-line couplers by precisely optimizing essential electrical properties, such as coupling factor, isolation, and phase difference between output ports. The effectiveness of the ANNs-SaDE framework is demonstrated by the designs of folded single-stage branch-line couplers and multi-stage wideband branch-line couplers.
Abstract:Large language model (LLM) unlearning has demonstrated its essential role in removing privacy and copyright-related responses, crucial for their legal and safe applications. However, the pursuit of complete unlearning often comes with substantial costs due to its compromises in their general functionality, leading to a notorious trade-off between unlearning and retention. In examining the update process for unlearning dynamically, we find gradients hold essential information for revealing this trade-off. In particular, we look at the varying relationship between retention performance and directional disparities between gradients during unlearning. It motivates the sculpting of an update mechanism derived from gradients from two sources, i.e., harmful for retention and useful for unlearning. Accordingly, we propose Gradient Rectified Unlearning (GRU), an enhanced unlearning framework controlling the updating gradients in a geometry-focused and optimization-driven manner such that their side impacts on other, unrelated responses can be minimized. Specifically, GRU derives a closed-form solution to project the unlearning gradient onto the orthogonal space of that gradient harmful for retention, ensuring minimal deviation from its original direction under the condition that overall performance is retained. Comprehensive experiments are conducted to demonstrate that GRU, as a general framework, is straightforward to implement and efficiently enhances a range of baseline methods through its adaptable and compatible characteristics. Additionally, experimental results show its broad effectiveness across a diverse set of benchmarks for LLM unlearning.
Abstract:Generalization to novel compound tasks under distribution shift is important for deploying transformer-based language models (LMs). This work investigates Chain-of-Thought (CoT) reasoning as a means to enhance OOD generalization. Through controlled experiments across several compound tasks, we reveal three key insights: (1) While QA-trained models achieve near-perfect in-distribution accuracy, their OOD performance degrades catastrophically, even with 10000k+ training examples; (2) the granularity of CoT data strongly correlates with generalization performance; finer-grained CoT data leads to better generalization; (3) CoT exhibits remarkable sample efficiency, matching QA performance with much less (even 80%) data. Theoretically, we demonstrate that compound tasks inherently permit shortcuts in Q-A data that misalign with true reasoning principles, while CoT forces internalization of valid dependency structures, and thus can achieve better generalization. Further, we show that transformer positional embeddings can amplify generalization by emphasizing subtask condition recurrence in long CoT sequences. Our combined theoretical and empirical analysis provides compelling evidence for CoT reasoning as a crucial training paradigm for enabling LM generalization under real-world distributional shifts for compound tasks.
Abstract:The estimation of underwater sound velocity distribution serves as a critical basis for facilitating effective underwater communication and precise positioning, given that variations in sound velocity influence the path of signal transmission. Conventional techniques for the direct measurement of sound velocity, as well as methods that involve the inversion of sound velocity utilizing acoustic field data, necessitate on--site data collection. This requirement not only places high demands on device deployment, but also presents challenges in achieving real-time estimation of sound velocity distribution. In order to construct a real-time sound velocity field and eliminate the need for underwater onsite data measurement operations, we propose a self-attention embedded multimodal data fusion convolutional neural network (SA-MDF-CNN) for real-time underwater sound speed profile (SSP) estimation. The proposed model seeks to elucidate the inherent relationship between remote sensing sea surface temperature (SST) data, the primary component characteristics of historical SSPs, and their spatial coordinates. This is achieved by employing CNNs and attention mechanisms to extract local and global correlations from the input data, respectively. The ultimate objective is to facilitate a rapid and precise estimation of sound velocity distribution within a specified task area. Experimental results show that the method proposed in this paper has lower root mean square error (RMSE) and stronger robustness than other state-of-the-art methods.
Abstract:Despite the remarkable success of diffusion models (DMs) in data generation, they exhibit specific failure cases with unsatisfactory outputs. We focus on one such limitation: the ability of DMs to learn hidden rules between image features. Specifically, for image data with dependent features ($\mathbf{x}$) and ($\mathbf{y}$) (e.g., the height of the sun ($\mathbf{x}$) and the length of the shadow ($\mathbf{y}$)), we investigate whether DMs can accurately capture the inter-feature rule ($p(\mathbf{y}|\mathbf{x})$). Empirical evaluations on mainstream DMs (e.g., Stable Diffusion 3.5) reveal consistent failures, such as inconsistent lighting-shadow relationships and mismatched object-mirror reflections. Inspired by these findings, we design four synthetic tasks with strongly correlated features to assess DMs' rule-learning abilities. Extensive experiments show that while DMs can identify coarse-grained rules, they struggle with fine-grained ones. Our theoretical analysis demonstrates that DMs trained via denoising score matching (DSM) exhibit constant errors in learning hidden rules, as the DSM objective is not compatible with rule conformity. To mitigate this, we introduce a common technique - incorporating additional classifier guidance during sampling, which achieves (limited) improvements. Our analysis reveals that the subtle signals of fine-grained rules are challenging for the classifier to capture, providing insights for future exploration.
Abstract:Large language models (LLMs) demonstrate remarkable capabilities but face deployment challenges due to their massive parameter counts. While existing compression techniques like pruning can reduce model size, it leads to significant accuracy degradation under high compression ratios. We present a novel perspective inspired by constant folding in compiler optimization. Our approach enables parameter reduction by treating activation functions in LLMs as linear functions. However, recent LLMs use complex non-linear activations like GELU that prevent direct application of this technique. We propose TARDIS, which enables optimization of LLMs with non-linear activations by partially approximating them with linear functions in frequently occurring input ranges. For outlier inputs, TARDIS employs an online predictor to dynamically fall back to original computations. Our experiments demonstrate that TARDIS achieves 80% parameter reduction in feed-forward networks, while significantly outperforming state-of-the-art pruning methods Wanda and RIA with up to 65% higher accuracy. In practical deployments for a 7B model, TARDIS achieves 1.6x end-to-end inference speedup when integrated with the vLLM serving system, and 1.4x speedup with the widely adopted HuggingFace implementation, while incurring only a 10.9% accuracy trade-off.
Abstract:Large Language Model (LLM) has transformative potential in various domains, including recommender systems (RS). There have been a handful of research that focuses on empowering the RS by LLM. However, previous efforts mainly focus on LLM as RS, which may face the challenge of intolerant inference costs by LLM. Recently, the integration of LLM into RS, known as LLM-Enhanced Recommender Systems (LLMERS), has garnered significant interest due to its potential to address latency and memory constraints in real-world applications. This paper presents a comprehensive survey of the latest research efforts aimed at leveraging LLM to enhance RS capabilities. We identify a critical shift in the field with the move towards incorporating LLM into the online system, notably by avoiding their use during inference. Our survey categorizes the existing LLMERS approaches into three primary types based on the component of the RS model being augmented: Knowledge Enhancement, Interaction Enhancement, and Model Enhancement. We provide an in-depth analysis of each category, discussing the methodologies, challenges, and contributions of recent studies. Furthermore, we highlight several promising research directions that could further advance the field of LLMERS.