Abstract:Most current MKGC approaches are predominantly based on discriminative models that maximize conditional likelihood. These approaches struggle to efficiently capture the complex connections in real-world knowledge graphs, thereby limiting their overall performance. To address this issue, we propose a structure-aware multimodal Diffusion model for multimodal knowledge graph Completion (DiffusionCom). DiffusionCom innovatively approaches the problem from the perspective of generative models, modeling the association between the $(head, relation)$ pair and candidate tail entities as their joint probability distribution $p((head, relation), (tail))$, and framing the MKGC task as a process of gradually generating the joint probability distribution from noise. Furthermore, to fully leverage the structural information in MKGs, we propose Structure-MKGformer, an adaptive and structure-aware multimodal knowledge representation learning method, as the encoder for DiffusionCom. Structure-MKGformer captures rich structural information through a multimodal graph attention network (MGAT) and adaptively fuses it with entity representations, thereby enhancing the structural awareness of these representations. This design effectively addresses the limitations of existing MKGC methods, particularly those based on multimodal pre-trained models, in utilizing structural information. DiffusionCom is trained using both generative and discriminative losses for the generator, while the feature extractor is optimized exclusively with discriminative loss. This dual approach allows DiffusionCom to harness the strengths of both generative and discriminative models. Extensive experiments on the FB15k-237-IMG and WN18-IMG datasets demonstrate that DiffusionCom outperforms state-of-the-art models.
Abstract:With the rapid advancement of mobile networks and the widespread use of mobile devices, spatial crowdsourcing, which involves assigning location-based tasks to mobile workers, has gained significant attention. However, most existing research focuses on task assignment at the current moment, overlooking the fluctuating demand and supply between tasks and workers over time. To address this issue, we introduce an adaptive task assignment problem, which aims to maximize the number of assigned tasks by dynamically adjusting task assignments in response to changing demand and supply. We develop a spatial crowdsourcing framework, namely demand-based adaptive task assignment with dynamic worker availability windows, which consists of two components including task demand prediction and task assignment. In the first component, we construct a graph adjacency matrix representing the demand dependency relationships in different regions and employ a multivariate time series learning approach to predict future task demands. In the task assignment component, we adjust tasks to workers based on these predictions, worker availability windows, and the current task assignments, where each worker has an availability window that indicates the time periods they are available for task assignments. To reduce the search space of task assignments and be efficient, we propose a worker dependency separation approach based on graph partition and a task value function with reinforcement learning. Experiments on real data demonstrate that our proposals are both effective and efficient.
Abstract:Recommender systems (RS) serve as a fundamental tool for navigating the vast expanse of online information, with deep learning advancements playing an increasingly important role in improving ranking accuracy. Among these, graph neural networks (GNNs) excel at extracting higher-order structural information, while large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted. Recent research has focused on graph foundation models (GFMs), which integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding. In this survey, we provide a comprehensive overview of GFM-based RS technologies by introducing a clear taxonomy of current approaches, diving into methodological details, and highlighting key challenges and future directions. By synthesizing recent advancements, we aim to offer valuable insights into the evolving landscape of GFM-based recommender systems.
Abstract:In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the na\"ive performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.
Abstract:Graph Contrastive Learning frameworks have demonstrated success in generating high-quality node representations. The existing research on efficient data augmentation methods and ideal pretext tasks for graph contrastive learning remains limited, resulting in suboptimal node representation in the unsupervised setting. In this paper, we introduce LAC, a graph contrastive learning framework with learnable data augmentation in an orthogonal continuous space. To capture the representative information in the graph data during augmentation, we introduce a continuous view augmenter, that applies both a masked topology augmentation module and a cross-channel feature augmentation module to adaptively augment the topological information and the feature information within an orthogonal continuous space, respectively. The orthogonal nature of continuous space ensures that the augmentation process avoids dimension collapse. To enhance the effectiveness of pretext tasks, we propose an information-theoretic principle named InfoBal and introduce corresponding pretext tasks. These tasks enable the continuous view augmenter to maintain consistency in the representative information across views while maximizing diversity between views, and allow the encoder to fully utilize the representative information in the unsupervised setting. Our experimental results show that LAC significantly outperforms the state-of-the-art frameworks.
Abstract:Decentralized learning has become crucial for collaborative model training in environments where data privacy and trust are paramount. In web-based applications, clients are liberated from traditional fixed network topologies, enabling the establishment of arbitrary peer-to-peer (P2P) connections. While this flexibility is highly promising, it introduces a fundamental challenge: the optimal selection of neighbors to ensure effective collaboration. To address this, we introduce WPFed, a fully decentralized, web-based learning framework designed to enable globally optimal neighbor selection. WPFed employs a dynamic communication graph and a weighted neighbor selection mechanism. By assessing inter-client similarity through Locality-Sensitive Hashing (LSH) and evaluating model quality based on peer rankings, WPFed enables clients to identify personalized optimal neighbors on a global scale while preserving data privacy. To enhance security and deter malicious behavior, WPFed integrates verification mechanisms for both LSH codes and performance rankings, leveraging blockchain-driven announcements to ensure transparency and verifiability. Through extensive experiments on multiple real-world datasets, we demonstrate that WPFed significantly improves learning outcomes and system robustness compared to traditional federated learning methods. Our findings highlight WPFed's potential to facilitate effective and secure decentralized collaborative learning across diverse and interconnected web environments.
Abstract:The increasing interest in international travel has raised the demand of retrieving point of interests in multiple languages. This is even superior to find local venues such as restaurants and scenic spots in unfamiliar languages when traveling abroad. Multilingual POI retrieval, enabling users to find desired POIs in a demanded language using queries in numerous languages, has become an indispensable feature of today's global map applications such as Baidu Maps. This task is non-trivial because of two key challenges: (1) visiting sparsity and (2) multilingual query-POI matching. To this end, we propose a Heterogeneous Graph Attention Matching Network (HGAMN) to concurrently address both challenges. Specifically, we construct a heterogeneous graph that contains two types of nodes: POI node and query node using the search logs of Baidu Maps. To alleviate challenge \#1, we construct edges between different POI nodes to link the low-frequency POIs with the high-frequency ones, which enables the transfer of knowledge from the latter to the former. To mitigate challenge \#2, we construct edges between POI and query nodes based on the co-occurrences between queries and POIs, where queries in different languages and formulations can be aggregated for individual POIs. Moreover, we develop an attention-based network to jointly learn node representations of the heterogeneous graph and further design a cross-attention module to fuse the representations of both types of nodes for query-POI relevance scoring. Extensive experiments conducted on large-scale real-world datasets from Baidu Maps demonstrate the superiority and effectiveness of HGAMN. In addition, HGAMN has already been deployed in production at Baidu Maps, and it successfully keeps serving hundreds of millions of requests every day.
Abstract:In recent years, pre-trained multimodal large models have attracted widespread attention due to their outstanding performance in various multimodal applications. Nonetheless, the extensive computational resources and vast datasets required for their training present significant hurdles for deployment in environments with limited computational resources. To address this challenge, we propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model for efficient cross-modal representation learning for the first time. Unlike existing distillation methods, our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model. Ensuring that the student model inherits a comprehensive and nuanced understanding of the teacher knowledge. To optimize each distillation loss in a balanced and efficient manner, we propose a dynamic self-adaptive distillation loss balancer, a novel component eliminating the need for manual loss weight adjustments and dynamically balances each loss item during the distillation process. Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information, requiring minimal computational resources. This efficient approach is suited for various applications and allows the deployment of advanced multimodal technologies even in resource-limited settings. Extensive experiments has demonstrated that our method maintains high performance while significantly reducing model complexity and training costs. Moreover, our distilled student model utilizes only image-level information to achieve state-of-the-art performance on cross-modal retrieval tasks, surpassing previous methods that relied on region-level information.
Abstract:Academic networks in the real world can usually be described by heterogeneous information networks composed of multi-type nodes and relationships. Some existing research on representation learning for homogeneous information networks lacks the ability to explore heterogeneous information networks in heterogeneous information networks. It cannot be applied to heterogeneous information networks. Aiming at the practical needs of effectively identifying and discovering scientific research teams from the academic heterogeneous information network composed of massive and complex scientific and technological big data, this paper proposes a scientific research team identification method based on representation learning of academic heterogeneous information networks. The attention mechanism at node level and meta-path level learns low-dimensional, dense and real-valued vector representations on the basis of retaining the rich topological information of nodes in the network and the semantic information based on meta-paths, and realizes effective identification and discovery of scientific research teams and important team members in academic heterogeneous information networks based on maximizing node influence. Experimental results show that our proposed method outperforms the comparative methods.
Abstract:Because most of the scientific literature data is unmarked, it makes semantic representation learning based on unsupervised graph become crucial. At the same time, in order to enrich the features of scientific literature, a learning method of semantic representation of scientific literature based on adaptive features and graph neural network is proposed. By introducing the adaptive feature method, the features of scientific literature are considered globally and locally. The graph attention mechanism is used to sum the features of scientific literature with citation relationship, and give each scientific literature different feature weights, so as to better express the correlation between the features of different scientific literature. In addition, an unsupervised graph neural network semantic representation learning method is proposed. By comparing the mutual information between the positive and negative local semantic representation of scientific literature and the global graph semantic representation in the potential space, the graph neural network can capture the local and global information, thus improving the learning ability of the semantic representation of scientific literature. The experimental results show that the proposed learning method of semantic representation of scientific literature based on adaptive feature and graph neural network is competitive on the basis of scientific literature classification, and has achieved good results.