Abstract:Sequential Recommendation (SR) plays a critical role in predicting users' sequential preferences. Despite its growing prominence in various industries, the increasing scale of SR models incurs substantial computational costs and unpredictability, challenging developers to manage resources efficiently. Under this predicament, Scaling Laws have achieved significant success by examining the loss as models scale up. However, there remains a disparity between loss and model performance, which is of greater concern in practical applications. Moreover, as data continues to expand, it incorporates repetitive and inefficient data. In response, we introduce the Performance Law for SR models, which aims to theoretically investigate and model the relationship between model performance and data quality. Specifically, we first fit the HR and NDCG metrics to transformer-based SR models. Subsequently, we propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics. Our method enables accurate predictions across various dataset scales and model sizes, demonstrating a strong correlation in large SR models and offering insights into achieving optimal performance for any given model configuration.
Abstract:Recommendation systems are essential for filtering data and retrieving relevant information across various applications. Recent advancements have seen these systems incorporate increasingly large embedding tables, scaling up to tens of terabytes for industrial use. However, the expansion of network parameters in traditional recommendation models has plateaued at tens of millions, limiting further benefits from increased embedding parameters. Inspired by the success of large language models (LLMs), a new approach has emerged that scales network parameters using innovative structures, enabling continued performance improvements. A significant development in this area is Meta's generative recommendation model HSTU, which illustrates the scaling laws of recommendation systems by expanding parameters to thousands of billions. This new paradigm has achieved substantial performance gains in online experiments. In this paper, we aim to enhance the understanding of scaling laws by conducting comprehensive evaluations of large recommendation models. Firstly, we investigate the scaling laws across different backbone architectures of the large recommendation models. Secondly, we conduct comprehensive ablation studies to explore the origins of these scaling laws. We then further assess the performance of HSTU, as the representative of large recommendation models, on complex user behavior modeling tasks to evaluate its applicability. Notably, we also analyze its effectiveness in ranking tasks for the first time. Finally, we offer insights into future directions for large recommendation models. Supplementary materials for our research are available on GitHub at https://github.com/USTC-StarTeam/Large-Recommendation-Models.
Abstract:Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
Abstract:Click-through Rate (CTR) prediction is crucial for online personalization platforms. Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction. Current long-term user behavior modeling algorithms predominantly follow two cascading stages. The first stage retrieves subsequence related to the target item from the long-term behavior sequence, while the second stage models the relationship between the subsequence and the target item. Despite significant progress, these methods have two critical flaws. First, the retrieval query typically includes only target item information, limiting the ability to capture the user's diverse interests. Second, relational information, such as sequential and interactive information within the subsequence, is frequently overlooked. Therefore, it requires to be further mined to more accurately model user interests. To this end, we propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN). Specifically, we first construct queries based on behaviors observed at different time scales to obtain subsequences, each capturing users' interest at various granularities. We then introduce an noval multi-head Fourier transformer to efficiently learn sequential and interactive information within the subsequences, leading to more accurate modeling of user interests. Finally, we employ multi-head target attention to adaptively assess the impact of these multi-granularity interests on the target item. Extensive experiments have demonstrated that MIRRN significantly outperforms state-of-the-art baselines. Furthermore, an A/B test shows that MIRRN increases the average number of listening songs by 1.32% and the average time of listening songs by 0.55% on a popular music streaming app. The implementation code is publicly available at https://github.com/psycho-demon/MIRRN.
Abstract:Many platforms, such as e-commerce websites, offer both search and recommendation services simultaneously to better meet users' diverse needs. Recommendation services suggest items based on user preferences, while search services allow users to search for items before providing recommendations. Since users and items are often shared between the search and recommendation domains, there is a valuable opportunity to enhance the recommendation domain by leveraging user preferences extracted from the search domain. Existing approaches either overlook the shift in user intention between these domains or fail to capture the significant impact of learning from users' search queries on understanding their interests. In this paper, we propose a framework that learns from user search query embeddings within the context of user preferences in the recommendation domain. Specifically, user search query sequences from the search domain are used to predict the items users will click at the next time point in the recommendation domain. Additionally, the relationship between queries and items is explored through contrastive learning. To address issues of data sparsity, the diffusion model is incorporated to infer positive items the user will select after searching with certain queries in a denoising manner, which is particularly effective in preventing false positives. Effectively extracting this information, the queries are integrated into click-through rate prediction in the recommendation domain. Experimental analysis demonstrates that our model outperforms state-of-the-art models in the recommendation domain.
Abstract:This article makes discrete masked models for the generative modeling of discrete data controllable. The goal is to generate samples of a discrete random variable that adheres to a posterior distribution, satisfies specific constraints, or optimizes a reward function. This methodological development enables broad applications across downstream tasks such as class-specific image generation and protein design. Existing approaches for controllable generation of masked models typically rely on task-specific fine-tuning or additional modifications, which can be inefficient and resource-intensive. To overcome these limitations, we propose a novel plug-and-play framework based on importance sampling that bypasses the need for training a conditional score. Our framework is agnostic to the choice of control criteria, requires no gradient information, and is well-suited for tasks such as posterior sampling, Bayesian inverse problems, and constrained generation. We demonstrate the effectiveness of our approach through extensive experiments, showcasing its versatility across multiple domains, including protein design.
Abstract:Wireless networks are increasingly facing challenges due to their expanding scale and complexity. These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks. In this article, we introduce WirelessAgent, a novel approach leveraging large language models (LLMs) to develop AI agents capable of managing complex tasks in wireless networks. It can effectively improve network performance through advanced reasoning, multimodal data processing, and autonomous decision making. Thereafter, we demonstrate the practical applicability and benefits of WirelessAgent for network slicing management. The experimental results show that WirelessAgent is capable of accurately understanding user intent, effectively allocating slice resources, and consistently maintaining optimal performance.
Abstract:Pruning at initialization (PaI) reduces training costs by removing weights before training, which becomes increasingly crucial with the growing network size. However, current PaI methods still have a large accuracy gap with iterative pruning, especially at high sparsity levels. This raises an intriguing question: can we get inspiration from iterative pruning to improve the PaI performance? In the lottery ticket hypothesis, the iterative rewind pruning (IRP) finds subnetworks retroactively by rewinding the parameter to the original initialization in every pruning iteration, which means all the subnetworks are based on the initial state. Here, we hypothesise the surviving subnetworks are more important and bridge the initial feature and their surviving score as the PaI criterion. We employ an end-to-end neural network (\textbf{AutoS}parse) to learn this correlation, input the model's initial features, output their score and then prune the lowest score parameters before training. To validate the accuracy and generalization of our method, we performed PaI across various models. Results show that our approach outperforms existing methods in high-sparsity settings. Notably, as the underlying logic of model pruning is consistent in different models, only one-time IRP on one model is needed (e.g., once IRP on ResNet-18/CIFAR-10, AutoS can be generalized to VGG-16/CIFAR-10, ResNet-18/TinyImageNet, et al.). As the first neural network-based PaI method, we conduct extensive experiments to validate the factors influencing this approach. These results reveal the learning tendencies of neural networks and provide new insights into our understanding and research of PaI from a practical perspective. Our code is available at: https://github.com/ChengYaofeng/AutoSparse.git.
Abstract:In the realm of recommendation systems, users exhibit a diverse array of behaviors when interacting with items. This phenomenon has spurred research into learning the implicit semantic relationships between these behaviors to enhance recommendation performance. However, these methods often entail high computational complexity. To address concerns regarding efficiency, pre-training presents a viable solution. Its objective is to extract knowledge from extensive pre-training data and fine-tune the model for downstream tasks. Nevertheless, previous pre-training methods have primarily focused on single-behavior data, while multi-behavior data contains significant noise. Additionally, the fully fine-tuning strategy adopted by these methods still imposes a considerable computational burden. In response to this challenge, we propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation. Specifically, in the pre-training stage, we commence by proposing a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales, thereby facilitating the comprehension of the contextual semantics of multi-behavior sequences. Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module, which generates personalized, progressive, and diverse prompts to fully exploit the potential of the pre-trained model effectively. Extensive experiments on three real-world datasets have unequivocally demonstrated that DPCPL not only exhibits high efficiency and effectiveness, requiring minimal parameter adjustments but also surpasses the state-of-the-art performance across a diverse range of downstream tasks.
Abstract:Potato yield is an important metric for farmers to further optimize their cultivation practices. Potato yield can be estimated on a harvester using an RGB-D camera that can estimate the three-dimensional (3D) volume of individual potato tubers. A challenge, however, is that the 3D shape derived from RGB-D images is only partially completed, underestimating the actual volume. To address this issue, we developed a 3D shape completion network, called CoRe++, which can complete the 3D shape from RGB-D images. CoRe++ is a deep learning network that consists of a convolutional encoder and a decoder. The encoder compresses RGB-D images into latent vectors that are used by the decoder to complete the 3D shape using the deep signed distance field network (DeepSDF). To evaluate our CoRe++ network, we collected partial and complete 3D point clouds of 339 potato tubers on an operational harvester in Japan. On the 1425 RGB-D images in the test set (representing 51 unique potato tubers), our network achieved a completion accuracy of 2.8 mm on average. For volumetric estimation, the root mean squared error (RMSE) was 22.6 ml, and this was better than the RMSE of the linear regression (31.1 ml) and the base model (36.9 ml). We found that the RMSE can be further reduced to 18.2 ml when performing the 3D shape completion in the center of the RGB-D image. With an average 3D shape completion time of 10 milliseconds per tuber, we can conclude that CoRe++ is both fast and accurate enough to be implemented on an operational harvester for high-throughput potato yield estimation. Our code, network weights and dataset are publicly available at https://github.com/UTokyo-FieldPhenomics-Lab/corepp.git.