Sherman
Abstract:Fine-tuning large pre-trained foundation models (FMs) on distributed edge devices presents considerable computational and privacy challenges. Federated fine-tuning (FedFT) mitigates some privacy issues by facilitating collaborative model training without the need to share raw data. To lessen the computational burden on resource-limited devices, combining low-rank adaptation (LoRA) with federated learning enables parameter-efficient fine-tuning. Additionally, the split FedFT architecture partitions an FM between edge devices and a central server, reducing the necessity for complete model deployment on individual devices. However, the risk of privacy eavesdropping attacks in FedFT remains a concern, particularly in sensitive areas such as healthcare and finance. In this paper, we propose a split FedFT framework with differential privacy (DP) over wireless networks, where the inherent wireless channel noise in the uplink transmission is utilized to achieve DP guarantees without adding an extra artificial noise. We shall investigate the impact of the wireless noise on convergence performance of the proposed framework. We will also show that by updating only one of the low-rank matrices in the split FedFT with DP, the proposed method can mitigate the noise amplification effect. Simulation results will demonstrate that the proposed framework achieves higher accuracy under strict privacy budgets compared to baseline methods.
Abstract:This paper presents a semantic-aware multi-modal resource allocation (SAMRA) for multi-task using multi-agent reinforcement learning (MARL), termed SAMRAMARL, utilizing in platoon systems where cellular vehicle-to-everything (C-V2X) communication is employed. The proposed approach leverages the semantic information to optimize the allocation of communication resources. By integrating a distributed multi-agent reinforcement learning (MARL) algorithm, SAMRAMARL enables autonomous decision-making for each vehicle, channel assignment optimization, power allocation, and semantic symbol length based on the contextual importance of the transmitted information. This semantic-awareness ensures that both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications prioritize data that is critical for maintaining safe and efficient platoon operations. The framework also introduces a tailored quality of experience (QoE) metric for semantic communication, aiming to maximize QoE in V2V links while improving the success rate of semantic information transmission (SRS). Extensive simulations has demonstrated that SAMRAMARL outperforms existing methods, achieving significant gains in QoE and communication efficiency in C-V2X platooning scenarios.
Abstract:This paper investigates distributed computing and cooperative control of connected and automated vehicles (CAVs) in ramp merging scenario under transportation cyber-physical system. Firstly, a centralized cooperative trajectory planning problem is formulated subject to the safely constraints and traffic performance in ramp merging scenario, where the trajectories of all vehicles are jointly optimized. To get rid of the reliance on a central controller and reduce computation time, a distributed solution to this problem implemented among CAVs through Vehicles-to-Everything (V2X) communication is proposed. Unlike existing method, our method can distribute the computational task among CAVs and carry out parallel solving through V2X communication. Then, a multi-vehicles model predictive control (MPC) problem aimed at maximizing system stability and minimizing control input is formulated based on the solution of the first problem subject to strict safety constants and input limits. Due to these complex constraints, this problem becomes high-dimensional, centralized, and non-convex. To solve it in a short time, a decomposition and convex reformulation method, namely distributed cooperative iterative model predictive control (DCIMPC), is proposed. This method leverages the communication capability of CAVs to decompose the problem, making full use of the computational resources on vehicles to achieve fast solutions and distributed control. The two above problems with their corresponding solving methods form the systemic framework of the V2X assisted distributed computing and control. Simulations have been conducted to evaluate the framework's convergence, safety, and solving speed. Additionally, extra experiments are conducted to validate the performance of DCIMPC. The results show that our method can greatly improve computation speed without sacrificing system performance.
Abstract:The integration with artificial intelligence (AI) is recognized as one of the six usage scenarios in next-generation wireless communications. However, several critical challenges hinder the widespread application of deep learning (DL) techniques in wireless communications. In particular, existing DL-based wireless communications struggle to adapt to the rapidly changing wireless environments. In this paper, we discuss fast adaptation for DL-based wireless communications by using few-shot learning (FSL) techniques. We first identify the differences between fast adaptation in wireless communications and traditional AI tasks by highlighting two distinct FSL design requirements for wireless communications. To establish a wide perspective, we present a comprehensive review of the existing FSL techniques in wireless communications that satisfy these two design requirements. In particular, we emphasize the importance of applying domain knowledge in achieving fast adaptation. We specifically focus on multiuser multiple-input multiple-output (MU-MIMO) precoding as an examples to demonstrate the advantages of the FSL to achieve fast adaptation in wireless communications. Finally, we highlight several open research issues for achieving broadscope future deployment of fast adaptive DL in wireless communication applications.
Abstract:Intelligent Transportation Systems (ITS) leverage Integrated Sensing and Communications (ISAC) to enhance data exchange between vehicles and infrastructure in the Internet of Vehicles (IoV). This integration inevitably increases computing demands, risking real-time system stability. Vehicle Edge Computing (VEC) addresses this by offloading tasks to Road Side Unit (RSU), ensuring timely services. Our previous work FLSimCo algorithm, which uses local resources for Federated Self-Supervised Learning (SSL), though vehicles often can't complete all iterations task. Our improved algorithm offloads partial task to RSU and optimizes energy consumption by adjusting transmission power, CPU frequency, and task assignment ratios, balancing local and RSU-based training. Meanwhile, setting an offloading threshold further prevents inefficiencies. Simulation results show that the enhanced algorithm reduces energy consumption, improves offloading efficiency and the accuracy of Federated SSL.
Abstract:In the Internet of Vehicles (IoV), Federated Learning (FL) provides a privacy-preserving solution by aggregating local models without sharing data. Traditional supervised learning requires image data with labels, but data labeling involves significant manual effort. Federated Self-Supervised Learning (FSSL) utilizes Self-Supervised Learning (SSL) for local training in FL, eliminating the need for labels while protecting privacy. Compared to other SSL methods, Momentum Contrast (MoCo) reduces the demand for computing resources and storage space by creating a dictionary. However, using MoCo in FSSL requires uploading the local dictionary from vehicles to Base Station (BS), which poses a risk of privacy leakage. Simplified Contrast (SimCo) addresses the privacy leakage issue in MoCo-based FSSL by using dual temperature instead of a dictionary to control sample distribution. Additionally, considering the negative impact of motion blur on model aggregation, and based on SimCo, we propose a motion blur-resistant FSSL method, referred to as BFSSL. Furthermore, we address energy consumption and delay in the BFSSL process by proposing a Deep Reinforcement Learning (DRL)-based resource allocation scheme, called DRL-BFSSL. In this scheme, BS allocates the Central Processing Unit (CPU) frequency and transmission power of vehicles to minimize energy consumption and latency, while aggregating received models based on the motion blur level. Simulation results validate the effectiveness of our proposed aggregation and resource allocation methods.
Abstract:The forthcoming generation of wireless technology, 6G, promises a revolutionary leap beyond traditional data-centric services. It aims to usher in an era of ubiquitous intelligent services, where everything is interconnected and intelligent. This vision requires the seamless integration of three fundamental modules: Sensing for information acquisition, communication for information sharing, and computation for information processing and decision-making. These modules are intricately linked, especially in complex tasks such as edge learning and inference. However, the performance of these modules is interdependent, creating a resource competition for time, energy, and bandwidth. Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge, but they fall short of meeting the extreme performance requirements. To overcome these limitations, it is essential to develop new techniques that comprehensively integrate sensing, communication, and computation. This integrated approach, known as Integrated Sensing, Communication, and Computation (ISCC), offers a systematic perspective for enhancing task performance. This paper begins with a comprehensive survey of historic and related techniques such as ICC, ISC, and ISAC, highlighting their strengths and limitations. It then explores the state-of-the-art signal designs for ISCC, along with network resource management strategies specifically tailored for ISCC. Furthermore, this paper discusses the exciting research opportunities that lie ahead for implementing ISCC in future advanced networks. By embracing ISCC, we can unlock the full potential of intelligent connectivity, paving the way for groundbreaking applications and services.
Abstract:Federated Learning (FL) can protect the privacy of the vehicles in vehicle edge computing (VEC) to a certain extent through sharing the gradients of vehicles' local models instead of local data. The gradients of vehicles' local models are usually large for the vehicular artificial intelligence (AI) applications, thus transmitting such large gradients would cause large per-round latency. Gradient quantization has been proposed as one effective approach to reduce the per-round latency in FL enabled VEC through compressing gradients and reducing the number of bits, i.e., the quantization level, to transmit gradients. The selection of quantization level and thresholds determines the quantization error, which further affects the model accuracy and training time. To do so, the total training time and quantization error (QE) become two key metrics for the FL enabled VEC. It is critical to jointly optimize the total training time and QE for the FL enabled VEC. However, the time-varying channel condition causes more challenges to solve this problem. In this paper, we propose a distributed deep reinforcement learning (DRL)-based quantization level allocation scheme to optimize the long-term reward in terms of the total training time and QE. Extensive simulations identify the optimal weighted factors between the total training time and QE, and demonstrate the feasibility and effectiveness of the proposed scheme.
Abstract:As a promising technology, vehicular edge computing (VEC) can provide computing and caching services by deploying VEC servers near vehicles. However, VEC networks still face challenges such as high vehicle mobility. Digital twin (DT), an emerging technology, can predict, estimate, and analyze real-time states by digitally modeling objects in the physical world. By integrating DT with VEC, a virtual vehicle DT can be created in the VEC server to monitor the real-time operating status of vehicles. However, maintaining the vehicle DT model requires ongoing attention from the VEC server, which also needs to offer computing services for the vehicles. Therefore, effective allocation and scheduling of VEC server resources are crucial. This study focuses on a general VEC network with a single VEC service and multiple vehicles, examining the two types of delays caused by twin maintenance and computational processing within the network. By transforming the problem using satisfaction functions, we propose an optimization problem aimed at maximizing each vehicle's resource utility to determine the optimal resource allocation strategy. Given the non-convex nature of the issue, we employ multi-agent Markov decision processes to reformulate the problem. Subsequently, we propose the twin maintenance and computing task processing resource collaborative scheduling (MADRL-CSTC) algorithm, which leverages multi-agent deep reinforcement learning. Through experimental comparisons with alternative algorithms, it demonstrates that our proposed approach is effective in terms of resource allocation.
Abstract:In the rapidly evolving landscape of Internet of Vehicles (IoV) technology, Cellular Vehicle-to-Everything (C-V2X) communication has attracted much attention due to its superior performance in coverage, latency, and throughput. Resource allocation within C-V2X is crucial for ensuring the transmission of safety information and meeting the stringent requirements for ultra-low latency and high reliability in Vehicle-to-Vehicle (V2V) communication. This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge. By constructing a dynamic graph with communication links as nodes and employing the Graph Sample and Aggregation (GraphSAGE) model to adapt to changes in graph structure, the model aims to ensure a high success rate for V2V communication while minimizing interference on Vehicle-to-Infrastructure (V2I) links, thereby ensuring the successful transmission of V2V link information and maintaining high transmission rates for V2I links. The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment, allowing vehicles to extract low-dimensional features that include structural information from the graph network based on local observations and to make independent resource allocation decisions. Simulation results indicate that the introduction of GNN, with a modest increase in computational load, effectively enhances the decision-making quality of agents, demonstrating superiority to other methods. This study not only provides a theoretically efficient resource allocation strategy for V2V and V2I communications but also paves a new technical path for resource management in practical IoV environments.