Abstract:Task-oriented communication aims to extract and transmit task-relevant information to significantly reduce the communication overhead and transmission latency. However, the unpredictable distribution shifts between training and test data, including domain shift and semantic shift, can dramatically undermine the system performance. In order to tackle these challenges, it is crucial to ensure that the encoded features can generalize to domain-shifted data and detect semanticshifted data, while remaining compact for transmission. In this paper, we propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework. The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization and accurate semantic-shift detection without any knowledge of the test data during training. Specifically, we propose an invariant feature encoding approach based on the IB principle and IRM framework for domainshift generalization, which aims to find the causal relationship between the input data and task result by minimizing the complexity and domain dependence of the encoded feature. Furthermore, we enhance the task-oriented communication with the label-dependent feature encoding approach for semanticshift detection which achieves joint gains in IB optimization and detection performance. To avoid the intractable computation of the IB-based objective, we leverage variational approximation to derive a tractable upper bound for optimization. Extensive simulation results on image classification tasks demonstrate that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
Abstract:Lesion segmentation of ultrasound medical images based on deep learning techniques is a widely used method for diagnosing diseases. Although there is a large amount of ultrasound image data in medical centers and other places, labeled ultrasound datasets are a scarce resource, and it is likely that no datasets are available for new tissues/organs. Transfer learning provides the possibility to solve this problem, but there are too many features in natural images that are not related to the target domain. As a source domain, redundant features that are not conducive to the task will be extracted. Migration between ultrasound images can avoid this problem, but there are few types of public datasets, and it is difficult to find sufficiently similar source domains. Compared with natural images, ultrasound images have less information, and there are fewer transferable features between different ultrasound images, which may cause negative transfer. To this end, a multi-source adversarial transfer learning network for ultrasound image segmentation is proposed. Specifically, to address the lack of annotations, the idea of adversarial transfer learning is used to adaptively extract common features between a certain pair of source and target domains, which provides the possibility to utilize unlabeled ultrasound data. To alleviate the lack of knowledge in a single source domain, multi-source transfer learning is adopted to fuse knowledge from multiple source domains. In order to ensure the effectiveness of the fusion and maximize the use of precious data, a multi-source domain independent strategy is also proposed to improve the estimation of the target domain data distribution, which further increases the learning ability of the multi-source adversarial migration learning network in multiple domains.
Abstract:Transfer learning leverages knowledge from other domains and has been successful in many applications. Transfer learning methods rely on the overall similarity of the source and target domains. However, in some cases, it is impossible to provide an overall similar source domain, and only some source domains with similar local features can be provided. Can transfer learning be achieved? In this regard, we propose a multi-source adversarial transfer learning method based on local feature similarity to the source domain to handle transfer scenarios where the source and target domains have only local similarities. This method extracts transferable local features between a single source domain and the target domain through a sub-network. Specifically, the feature extractor of the sub-network is induced by the domain discriminator to learn transferable knowledge between the source domain and the target domain. The extracted features are then weighted by an attention module to suppress non-transferable local features while enhancing transferable local features. In order to ensure that the data from the target domain in different sub-networks in the same batch is exactly the same, we designed a multi-source domain independent strategy to provide the possibility for later local feature fusion to complete the key features required. In order to verify the effectiveness of the method, we made the dataset "Local Carvana Image Masking Dataset". Applying the proposed method to the image segmentation task of the proposed dataset achieves better transfer performance than other multi-source transfer learning methods. It is shown that the designed transfer learning method is feasible for transfer scenarios where the source and target domains have only local similarities.
Abstract:Task-oriented communication is an emerging paradigm for next-generation communication networks, which extracts and transmits task-relevant information, instead of raw data, for downstream applications. Most existing deep learning (DL)-based task-oriented communication systems adopt a closed-world scenario, assuming either the same data distribution for training and testing, or the system could have access to a large out-of-distribution (OoD) dataset for retraining. However, in practical open-world scenarios, task-oriented communication systems need to handle unknown OoD data. Under such circumstances, the powerful approximation ability of learning methods may force the task-oriented communication systems to overfit the training data (i.e., in-distribution data) and provide overconfident judgments when encountering OoD data. Based on the information bottleneck (IB) framework, we propose a class conditional IB (CCIB) approach to address this problem in this paper, supported by information-theoretical insights. The idea is to extract distinguishable features from in-distribution data while keeping their compactness and informativeness. This is achieved by imposing the class conditional latent prior distribution and enforcing the latent of different classes to be far away from each other. Simulation results shall demonstrate that the proposed approach detects OoD data more efficiently than the baselines and state-of-the-art approaches, without compromising the rate-distortion tradeoff.
Abstract:Temporal action localization in untrimmed videos is an important but difficult task. Difficulties are encountered in the application of existing methods when modeling temporal structures of videos. In the present study, we developed a novel method, referred to as Gemini Network, for effective modeling of temporal structures and achieving high-performance temporal action localization. The significant improvements afforded by the proposed method are attributable to three major factors. First, the developed network utilizes two subnets for effective modeling of temporal structures. Second, three parallel feature extraction pipelines are used to prevent interference between the extractions of different stage features. Third, the proposed method utilizes auxiliary supervision, with the auxiliary classifier losses affording additional constraints for improving the modeling capability of the network. As a demonstration of its effectiveness, the Gemini Network was used to achieve state-of-the-art temporal action localization performance on two challenging datasets, namely, THUMOS14 and ActivityNet.
Abstract:Population-based evolutionary algorithms have great potential to handle multiobjective optimisation problems. However, these algorithms depends largely on problem characteristics, and there is a need to improve their performance for a wider range of problems. References, which are often specified by the decision maker's preference in different forms, are a very effective method to improve the performance of algorithms but have not been fully explored in literature. This paper proposes a novel framework for effective use of references to strengthen algorithms. This framework considers references as search targets which can be adjusted based on the information collected during the search. The proposed framework is combined with new strategies, such as reference adaptation and adaptive local mating, to solve different types of problems. The proposed algorithm is compared with state of the arts on a wide range of problems with diverse characteristics. The comparison and extensive sensitivity analysis demonstrate that the proposed algorithm is competitive and robust across different types of problems studied in this paper.