Abstract:Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing methods perform the weighted federation based on their calculated similarities between pairwise clients (i.e., subgraphs). However, their inter-subgraph similarities estimated with the outputs of local models are less reliable, because the final outputs of local models may not comprehensively represent the real distribution of subgraph data. In addition, they ignore the critical intra-heterogeneity which usually exists within each subgraph itself. To address these issues, we propose a novel Federated learning method by integrally modeling the Inter-Intra Heterogeneity (FedIIH). For the inter-subgraph relationship, we propose a novel hierarchical variational model to infer the whole distribution of subgraph data in a multi-level form, so that we can accurately characterize the inter-subgraph similarities with the global perspective. For the intra-heterogeneity, we disentangle the subgraph into multiple latent factors and partition the model parameters into multiple parts, where each part corresponds to a single latent factor. Our FedIIH not only properly computes the distribution similarities between subgraphs, but also learns disentangled representations that are robust to irrelevant factors within subgraphs, so that it successfully considers the inter- and intra- heterogeneity simultaneously. Extensive experiments on six homophilic and five heterophilic graph datasets in both non-overlapping and overlapping settings demonstrate the effectiveness of our method when compared with nine state-of-the-art methods. Specifically, FedIIH averagely outperforms the second-best method by a large margin of 5.79% on all heterophilic datasets.
Abstract:In this paper, we explore the potential of artificial intelligence (AI) to address the challenges posed by terahertz ultra-massive multiple-input multiple-output (THz UM-MIMO) systems. We begin by outlining the characteristics of THz UM-MIMO systems, and identify three primary challenges for the transceiver design: 'hard to compute', 'hard to model', and 'hard to measure'. We argue that AI can provide a promising solution to these challenges. We then propose two systematic research roadmaps for developing AI algorithms tailored for THz UM-MIMO systems. The first roadmap, called model-driven deep learning (DL), emphasizes the importance to leverage available domain knowledge and advocates for adopting AI only to enhance the bottleneck modules within an established signal processing or optimization framework. We discuss four essential steps to make it work, including algorithmic frameworks, basis algorithms, loss function design, and neural architecture design. Afterwards, we present a forward-looking vision through the second roadmap, i.e., physical layer foundation models. This approach seeks to unify the design of different transceiver modules by focusing on their common foundation, i.e., the wireless channel. We propose to train a single, compact foundation model to estimate the score function of wireless channels, which can serve as a versatile prior for designing a wide variety of transceiver modules. We will also guide the readers through four essential steps, including general frameworks, conditioning, site-specific adaptation, and the joint design of foundation models and model-driven DL.
Abstract:Holographic MIMO (HMIMO) is being increasingly recognized as a key enabling technology for 6G wireless systems through the deployment of an extremely large number of antennas within a compact space to fully exploit the potentials of the electromagnetic (EM) channel. Nevertheless, the benefits of HMIMO systems cannot be fully unleashed without an efficient means to estimate the high-dimensional channel, whose distribution becomes increasingly complicated due to the accessibility of the near-field region. In this paper, we address the fundamental challenge of designing a low-complexity Bayes-optimal channel estimator in near-field HMIMO systems operating in unknown EM environments. The core idea is to estimate the HMIMO channels solely based on the Stein's score function of the received pilot signals and an estimated noise level, without relying on priors or supervision that is not feasible in practical deployment. A neural network is trained with the unsupervised denoising score matching objective to learn the parameterized score function. Meanwhile, a principal component analysis (PCA)-based algorithm is proposed to estimate the noise level leveraging the low-rank near-field spatial correlation. Building upon these techniques, we develop a Bayes-optimal score-based channel estimator for fully-digital HMIMO transceivers in a closed form. The optimal score-based estimator is also extended to hybrid analog-digital HMIMO systems by incorporating it into a low-complexity message passing algorithm. The (quasi-) Bayes-optimality of the proposed estimators is validated both in theory and by extensive simulation results. In addition to optimality, it is shown that our proposal is robust to various mismatches and can quickly adapt to dynamic EM environments in an online manner thanks to its unsupervised nature, demonstrating its potential in real-world deployment.
Abstract:Holographic MIMO (HMIMO) has recently been recognized as a promising enabler for future 6G systems through the use of an ultra-massive number of antennas in a compact space to exploit the propagation characteristics of the electromagnetic (EM) channel. Nevertheless, the promised gain of HMIMO could not be fully unleashed without an efficient means to estimate the high-dimensional channel. Bayes-optimal estimators typically necessitate either a large volume of supervised training samples or a priori knowledge of the true channel distribution, which could hardly be available in practice due to the enormous system scale and the complicated EM environments. It is thus important to design a Bayes-optimal estimator for the HMIMO channels in arbitrary and unknown EM environments, free of any supervision or priors. This work proposes a self-supervised minimum mean-square-error (MMSE) channel estimation algorithm based on powerful machine learning tools, i.e., score matching and principal component analysis. The training stage requires only the pilot signals, without knowing the spatial correlation, the ground-truth channels, or the received signal-to-noise-ratio. Simulation results will show that, even being totally self-supervised, the proposed algorithm can still approach the performance of the oracle MMSE method with an extremely low complexity, making it a competitive candidate in practice.
Abstract:Recently, Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP) due to their high reliability in characterizing the latent relationship among graph nodes (i.e., the atoms in a molecule). However, most existing GT-based methods usually explore the basic interactions between pairwise atoms, and thus they fail to consider the important interactions among critical motifs (e.g., functional groups consisted of several atoms) of molecules. As motifs in a molecule are significant patterns that are of great importance for determining molecular properties (e.g., toxicity and solubility), overlooking motif interactions inevitably hinders the effectiveness of MPP. To address this issue, we propose a novel Atom-Motif Contrastive Transformer (AMCT), which not only explores the atom-level interactions but also considers the motif-level interactions. Since the representations of atoms and motifs for a given molecule are actually two different views of the same instance, they are naturally aligned to generate the self-supervisory signals for model training. Meanwhile, the same motif can exist in different molecules, and hence we also employ the contrastive loss to maximize the representation agreement of identical motifs across different molecules. Finally, in order to clearly identify the motifs that are critical in deciding the properties of each molecule, we further construct a property-aware attention mechanism into our learning framework. Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness when compared with the state-of-the-art methods.
Abstract:Scientific laws describing natural systems may be more complex than our intuition can handle, and thus how we discover laws must change. Machine learning (ML) models can analyze large quantities of data, but their structure should match the underlying physical constraints to provide useful insight. Here we demonstrate a ML approach that incorporates such physical intuition to infer force laws in dusty plasma experiments. Trained on 3D particle trajectories, the model accounts for inherent symmetries and non-identical particles, accurately learns the effective non-reciprocal forces between particles, and extracts each particle's mass and charge. The model's accuracy (R^2 > 0.99) points to new physics in dusty plasma beyond the resolution of current theories and demonstrates how ML-powered approaches can guide new routes of scientific discovery in many-body systems.
Abstract:Ultra-massive multiple-input multiple-output (UM-MIMO) is a cutting-edge technology that promises to revolutionize wireless networks by providing an unprecedentedly high spectral and energy efficiency. The enlarged array aperture of UM-MIMO facilitates the accessibility of the near-field region, thereby offering a novel degree of freedom for communications and sensing. Nevertheless, the transceiver design for such systems is challenging because of the enormous system scale, the complicated channel characteristics, and the uncertainties in propagation environments. Therefore, it is critical to study scalable, low-complexity, and robust algorithms that can efficiently characterize and leverage the properties of the near-field channel. In this article, we will advocate two general frameworks from an artificial intelligence (AI)-native perspective, which are tailored for the algorithmic design of near-field UM-MIMO transceivers. Specifically, the frameworks for both iterative and non-iterative algorithms are discussed. Near-field beam focusing and channel estimation are presented as two tutorial-style examples to demonstrate the significant advantages of the proposed AI-native frameworks in terms of various key performance indicators.
Abstract:Task-oriented communication is an emerging paradigm for next-generation communication networks, which extracts and transmits task-relevant information, instead of raw data, for downstream applications. Most existing deep learning (DL)-based task-oriented communication systems adopt a closed-world scenario, assuming either the same data distribution for training and testing, or the system could have access to a large out-of-distribution (OoD) dataset for retraining. However, in practical open-world scenarios, task-oriented communication systems need to handle unknown OoD data. Under such circumstances, the powerful approximation ability of learning methods may force the task-oriented communication systems to overfit the training data (i.e., in-distribution data) and provide overconfident judgments when encountering OoD data. Based on the information bottleneck (IB) framework, we propose a class conditional IB (CCIB) approach to address this problem in this paper, supported by information-theoretical insights. The idea is to extract distinguishable features from in-distribution data while keeping their compactness and informativeness. This is achieved by imposing the class conditional latent prior distribution and enforcing the latent of different classes to be far away from each other. Simulation results shall demonstrate that the proposed approach detects OoD data more efficiently than the baselines and state-of-the-art approaches, without compromising the rate-distortion tradeoff.
Abstract:Terahertz ultra-massive MIMO (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless networks, for which channel estimation is highly challenging. Traditional analytical estimation methods are no longer effective, as the enlarged array aperture and the small wavelength result in a mixture of far-field and near-field paths, constituting a hybrid-field channel. Deep learning (DL)-based methods, despite the competitive performance, generally lack theoretical guarantees and scale poorly with the size of the array. In this paper, we propose a general DL framework for THz UM-MIMO channel estimation, which leverages existing iterative channel estimators and is with provable guarantees. Each iteration is implemented by a fixed point network (FPN), consisting of a closed-form linear estimator and a DL-based non-linear estimator. The proposed method perfectly matches the THz UM-MIMO channel estimation due to several unique advantages. First, the complexity is low and adaptive. It enjoys provable linear convergence with a low per-iteration cost and monotonically increasing accuracy, which enables an adaptive accuracy-complexity tradeoff. Second, it is robust to practical distribution shifts and can directly generalize to a variety of heavily out-of-distribution scenarios with almost no performance loss, which is suitable for the complicated THz channel conditions. Theoretical analysis and extensive simulation results are provided to illustrate the advantages over the state-of-the-art methods in estimation accuracy, convergence rate, complexity, and robustness.
Abstract:In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) needs to be sent from users back to the base station (BS), which causes prohibitive feedback overhead. In this paper, we propose a lightweight and adaptive deep learning-based CSI feedback scheme by capitalizing on deep equilibrium models. Different from existing deep learning-based approaches that stack multiple explicit layers, we propose an implicit equilibrium block to mimic the process of an infinite-depth neural network. In particular, the implicit equilibrium block is defined by a fixed-point iteration and the trainable parameters in each iteration are shared, which results in a lightweight model. Furthermore, the number of forward iterations can be adjusted according to the users' computational capability, achieving an online accuracy-efficiency trade-off. Simulation results will show that the proposed method obtains a comparable performance as the existing benchmarks but with much-reduced complexity and permits an accuracy-efficiency trade-off at runtime.