Abstract:Holographic MIMO (HMIMO) is being increasingly recognized as a key enabling technology for 6G wireless systems through the deployment of an extremely large number of antennas within a compact space to fully exploit the potentials of the electromagnetic (EM) channel. Nevertheless, the benefits of HMIMO systems cannot be fully unleashed without an efficient means to estimate the high-dimensional channel, whose distribution becomes increasingly complicated due to the accessibility of the near-field region. In this paper, we address the fundamental challenge of designing a low-complexity Bayes-optimal channel estimator in near-field HMIMO systems operating in unknown EM environments. The core idea is to estimate the HMIMO channels solely based on the Stein's score function of the received pilot signals and an estimated noise level, without relying on priors or supervision that is not feasible in practical deployment. A neural network is trained with the unsupervised denoising score matching objective to learn the parameterized score function. Meanwhile, a principal component analysis (PCA)-based algorithm is proposed to estimate the noise level leveraging the low-rank near-field spatial correlation. Building upon these techniques, we develop a Bayes-optimal score-based channel estimator for fully-digital HMIMO transceivers in a closed form. The optimal score-based estimator is also extended to hybrid analog-digital HMIMO systems by incorporating it into a low-complexity message passing algorithm. The (quasi-) Bayes-optimality of the proposed estimators is validated both in theory and by extensive simulation results. In addition to optimality, it is shown that our proposal is robust to various mismatches and can quickly adapt to dynamic EM environments in an online manner thanks to its unsupervised nature, demonstrating its potential in real-world deployment.
Abstract:Holographic MIMO (HMIMO) has recently been recognized as a promising enabler for future 6G systems through the use of an ultra-massive number of antennas in a compact space to exploit the propagation characteristics of the electromagnetic (EM) channel. Nevertheless, the promised gain of HMIMO could not be fully unleashed without an efficient means to estimate the high-dimensional channel. Bayes-optimal estimators typically necessitate either a large volume of supervised training samples or a priori knowledge of the true channel distribution, which could hardly be available in practice due to the enormous system scale and the complicated EM environments. It is thus important to design a Bayes-optimal estimator for the HMIMO channels in arbitrary and unknown EM environments, free of any supervision or priors. This work proposes a self-supervised minimum mean-square-error (MMSE) channel estimation algorithm based on powerful machine learning tools, i.e., score matching and principal component analysis. The training stage requires only the pilot signals, without knowing the spatial correlation, the ground-truth channels, or the received signal-to-noise-ratio. Simulation results will show that, even being totally self-supervised, the proposed algorithm can still approach the performance of the oracle MMSE method with an extremely low complexity, making it a competitive candidate in practice.