Abstract:Despite advancements, fine-tuning Large Language Models (LLMs) remains costly due to the extensive parameter count and substantial data requirements for model generalization. Accessibility to computing resources remains a barrier for the open-source community. To address this challenge, we propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model. Notably, we assess the model's internal gradients to estimate this relationship, aiming to rank the contribution of each training point. To enhance efficiency, we propose an optimization to compute influence functions with a reduced number of layers while achieving similar accuracy. By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data. Meantime, using influence functions to analyze model coverage to certain testing samples could provide a reliable and interpretable signal on the training set's coverage of those test points.
Abstract:We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.
Abstract:The acceleration of Large Language Models (LLMs) research has opened up new possibilities for evaluating generated texts. They serve as scalable and economical evaluators, but the question of how reliable these evaluators are has emerged as a crucial research question. Prior research efforts in the meta-evaluation of LLMs as judges limit the prompting of an LLM to a single use to obtain a final evaluation decision. They then compute the agreement between LLMs' outputs and human labels. This lacks interpretability in understanding the evaluation capability of LLMs. In light of this challenge, we propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices. Our experiments illustrate that it not only provides a more interpretable window for how well LLMs evaluate, but also leads to improvements up to 39.6% for different LLMs on a variety of meta-evaluation benchmarks.
Abstract:Large language models (LLMs) have rapidly evolved as the foundation of various natural language processing (NLP) applications. Despite their wide use cases, their understanding of culturally-related concepts and reasoning remains limited. Meantime, there is a significant need to enhance these models' cultural reasoning capabilities, especially concerning underrepresented regions. This paper introduces a novel pipeline for extracting high-quality, culturally-related instruction tuning datasets from vast unstructured corpora. We utilize a self-instruction generation pipeline to identify cultural concepts and trigger instruction. By integrating with a general-purpose instruction tuning dataset, our model demonstrates enhanced capabilities in recognizing and understanding regional cultural nuances, thereby enhancing its reasoning capabilities. We conduct experiments across three regions: Singapore, the Philippines, and the United States, achieving performance improvement of up to 6%. Our research opens new avenues for extracting cultural instruction tuning sets directly from unstructured data, setting a precedent for future innovations in the field.
Abstract:Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
Abstract:As the rapidly advancing domain of natural language processing (NLP), large language models (LLMs) have emerged as powerful tools for interpreting human commands and generating text across various tasks. Nonetheless, the resilience of LLMs to handle text containing inherent errors, stemming from human interactions and collaborative systems, has not been thoroughly explored. Our study investigates the resilience of LLMs against five common types of disruptions including 1) ASR (Automatic Speech Recognition) errors, 2) OCR (Optical Character Recognition) errors, 3) grammatical mistakes, 4) typographical errors, and 5) distractive content. We aim to investigate how these models react by deliberately embedding these errors into instructions. Our findings reveal that while some LLMs show a degree of resistance to certain types of noise, their overall performance significantly suffers. This emphasizes the importance of further investigation into enhancing model resilience. In response to the observed decline in performance, our study also evaluates a "re-pass" strategy, designed to purify the instructions of noise before the LLMs process them. Our analysis indicates that correcting noisy instructions, particularly for open-source LLMs, presents significant challenges.
Abstract:Intelligent Tutoring Systems (ITSs) can provide personalized and self-paced learning experience. The emergence of large language models (LLMs) further enables better human-machine interaction, and facilitates the development of conversational ITSs in various disciplines such as math and language learning. In dialogic teaching, recognizing and adapting to individual characteristics can significantly enhance student engagement and learning efficiency. However, characterizing and simulating student's persona remain challenging in training and evaluating conversational ITSs. In this work, we propose a framework to construct profiles of different student groups by refining and integrating both cognitive and noncognitive aspects, and leverage LLMs for personality-aware student simulation in a language learning scenario. We further enhance the framework with multi-aspect validation, and conduct extensive analysis from both teacher and student perspectives. Our experimental results show that state-of-the-art LLMs can produce diverse student responses according to the given language ability and personality traits, and trigger teacher's adaptive scaffolding strategies.
Abstract:Intelligent tutoring systems (ITSs) that imitate human tutors and aim to provide immediate and customized instructions or feedback to learners have shown their effectiveness in education. With the emergence of generative artificial intelligence, large language models (LLMs) further entitle the systems to complex and coherent conversational interactions. These systems would be of great help in language education as it involves developing skills in communication, which, however, drew relatively less attention. Additionally, due to the complicated cognitive development at younger ages, more endeavors are needed for practical uses. Scaffolding refers to a teaching technique where teachers provide support and guidance to students for learning and developing new concepts or skills. It is an effective way to support diverse learning needs, goals, processes, and outcomes. In this work, we investigate how pedagogical instructions facilitate the scaffolding in ITSs, by conducting a case study on guiding children to describe images for language learning. We construct different types of scaffolding tutoring systems grounded in four fundamental learning theories: knowledge construction, inquiry-based learning, dialogic teaching, and zone of proximal development. For qualitative and quantitative analyses, we build and refine a seven-dimension rubric to evaluate the scaffolding process. In our experiment on GPT-4V, we observe that LLMs demonstrate strong potential to follow pedagogical instructions and achieve self-paced learning in different student groups. Moreover, we extend our evaluation framework from a manual to an automated approach, paving the way to benchmark various conversational tutoring systems.
Abstract:Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through direct preference optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Abstract:The Transformer-based models with the multi-head self-attention mechanism are widely used in natural language processing, and provide state-of-the-art results. While the pre-trained language backbones are shown to implicitly capture certain linguistic knowledge, explicitly incorporating structure-aware features can bring about further improvement on the downstream tasks. However, such enhancement often requires additional neural components and increases training parameter size. In this work, we investigate the attention head selection and manipulation strategy for feature injection from a network pruning perspective, and conduct a case study on dialogue summarization. We first rank attention heads in a Transformer-based summarizer with layer-wise importance. We then select the underused heads through extensive analysis, and inject structure-aware features by manipulating the selected heads. Experimental results show that the importance-based head selection is effective for feature injection, and dialogue summarization can be improved by incorporating coreference information via head manipulation.