Southeast University, China
Abstract:Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Abstract:Traffic prediction is critical for optimizing travel scheduling and enhancing public safety, yet the complex spatial and temporal dynamics within traffic data present significant challenges for accurate forecasting. In this paper, we introduce a novel model, the Spatiotemporal-aware Trend-Seasonality Decomposition Network (STDN). This model begins by constructing a dynamic graph structure to represent traffic flow and incorporates novel spatio-temporal embeddings to jointly capture global traffic dynamics. The representations learned are further refined by a specially designed trend-seasonality decomposition module, which disentangles the trend-cyclical component and seasonal component for each traffic node at different times within the graph. These components are subsequently processed through an encoder-decoder network to generate the final predictions. Extensive experiments conducted on real-world traffic datasets demonstrate that STDN achieves superior performance with remarkable computation cost. Furthermore, we have released a new traffic dataset named JiNan, which features unique inner-city dynamics, thereby enriching the scenario comprehensiveness in traffic prediction evaluation.
Abstract:Fine-tuning is a key approach for adapting language models to specific downstream tasks, but updating all model parameters becomes impractical as model sizes increase. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address this challenge by introducing additional adaptation parameters into pre-trained weight matrices. However, LoRA's performance varies across different insertion points within the model, highlighting potential parameter inefficiency due to unnecessary insertions. To this end, we propose SSMLoRA (State Space Model Low-Rank Adaptation), an extension of LoRA that incorporates a State Space Model (SSM) to interconnect low-rank matrices. SSMLoRA ensures that performance is maintained even with sparser insertions. SSMLoRA allows the model to not only map inputs to a low-rank space for better feature extraction but also leverage the computations from the previous low-rank space. Our method achieves comparable performance to LoRA on the General Language Understanding Evaluation (GLUE) benchmark while using only half the parameters. Additionally, due to its structure, SSMLoRA shows promise in handling tasks with longer input sequences. .You can find our code here:https://github.com/yuhkalhic/SSMLoRA.
Abstract:Recently, mobile AI agents have gained increasing attention. Given a task, mobile AI agents can interact with mobile devices in multiple steps and finally form a GUI flow that solves the task. However, existing agents tend to focus on most task-relevant elements at each step, leading to local optimal solutions and ignoring the overall GUI flow. To address this issue, we constructed a training dataset called MobileReach, which breaks the task into page reaching and operation subtasks. Furthermore, we propose ReachAgent, a two-stage framework that focuses on improving its task-completion abilities. It utilizes the page reaching and page operation subtasks, along with reward-based preference GUI flows, to further enhance the agent. Experimental results show that ReachAgent significantly improves the IoU Acc and Text Acc by 7.12% and 7.69% on the step-level and 4.72% and 4.63% on the task-level compared to the SOTA agent. Our data and code will be released upon acceptance.
Abstract:Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using two open-source models: Gemma and Llama. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic similarity between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: Gemma shows a tendency toward negative emotion amplification, particularly anger, while maintaining certain positive emotions like optimism. Llama demonstrates superior emotional preservation across a broader spectrum of affects. Both models systematically generate responses with attenuated emotional intensity compared to human-authored content and show a bias toward positive emotions in response tasks. Additionally, both models maintain strong semantic similarity with original texts, though performance varies between continuation and response tasks. These findings provide insights into LLMs' emotional and semantic processing capabilities, with implications for their deployment in social media contexts and human-AI interaction design.
Abstract:Here's a condensed 1920-character version: The rise of misinformation and fake news in online political discourse poses significant challenges to democratic processes and public engagement. While debunking efforts aim to counteract misinformation and foster fact-based dialogue, these discussions often involve language toxicity and emotional polarization. We examined over 86 million debunking tweets and more than 4 million Reddit debunking comments to investigate the relationship between language toxicity, pessimism, and social polarization in debunking efforts. Focusing on discussions of the 2016 and 2020 U.S. presidential elections and the QAnon conspiracy theory, our analysis reveals three key findings: (1) peripheral participants (1-degree users) play a disproportionate role in shaping toxic discourse, driven by lower community accountability and emotional expression; (2) platform mechanisms significantly influence polarization, with Twitter amplifying partisan differences and Reddit fostering higher overall toxicity due to its structured, community-driven interactions; and (3) a negative correlation exists between language toxicity and pessimism, with increased interaction reducing toxicity, especially on Reddit. We show that platform architecture affects informational complexity of user interactions, with Twitter promoting concentrated, uniform discourse and Reddit encouraging diverse, complex communication. Our findings highlight the importance of user engagement patterns, platform dynamics, and emotional expressions in shaping polarization in debunking discourse. This study offers insights for policymakers and platform designers to mitigate harmful effects and promote healthier online discussions, with implications for understanding misinformation, hate speech, and political polarization in digital environments.
Abstract:Hybrid action models are widely considered an effective approach to reinforcement learning (RL) modeling. The current mainstream method is to train agents under Parameterized Action Markov Decision Processes (PAMDPs), which performs well in specific environments. Unfortunately, these models either exhibit drastic low learning efficiency in complex PAMDPs or lose crucial information in the conversion between raw space and latent space. To enhance the learning efficiency and asymptotic performance of the agent, we propose a model-based RL (MBRL) algorithm, FLEXplore. FLEXplore learns a parameterized-action-conditioned dynamics model and employs a modified Model Predictive Path Integral control. Unlike conventional MBRL algorithms, we carefully design the dynamics loss function and reward smoothing process to learn a loose yet flexible model. Additionally, we use the variational lower bound to maximize the mutual information between the state and the hybrid action, enhancing the exploration effectiveness of the agent. We theoretically demonstrate that FLEXplore can reduce the regret of the rollout trajectory through the Wasserstein Metric under given Lipschitz conditions. Our empirical results on several standard benchmarks show that FLEXplore has outstanding learning efficiency and asymptotic performance compared to other baselines.
Abstract:Text recognition technology applied to street-view storefront signs is increasingly utilized across various practical domains, including map navigation, smart city planning analysis, and business value assessments in commercial districts. This technology holds significant research and commercial potential. Nevertheless, it faces numerous challenges. Street view images often contain signboards with complex designs and diverse text styles, complicating the text recognition process. A notable advancement in this field was introduced by our team in a recent competition. We developed a novel multistage approach that integrates multimodal feature fusion, extensive self-supervised training, and a Transformer-based large model. Furthermore, innovative techniques such as BoxDQN, which relies on reinforcement learning, and text rectification methods were employed, leading to impressive outcomes. Comprehensive experiments have validated the effectiveness of these methods, showcasing our potential to enhance text recognition capabilities in complex urban environments.
Abstract:Singlish, a Creole language rooted in English, is a key focus in linguistic research within multilingual and multicultural contexts. However, its spoken form remains underexplored, limiting insights into its linguistic structure and applications. To address this gap, we standardize and annotate the largest spoken Singlish corpus, introducing the Multitask National Speech Corpus (MNSC). These datasets support diverse tasks, including Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), and Paralinguistic Question Answering (PQA). We release standardized splits and a human-verified test set to facilitate further research. Additionally, we propose SingAudioLLM, a multi-task multimodal model leveraging multimodal large language models to handle these tasks concurrently. Experiments reveal our models adaptability to Singlish context, achieving state-of-the-art performance and outperforming prior models by 10-30% in comparison with other AudioLLMs and cascaded solutions.
Abstract:Low-rank adaptation (LoRA) reduces the computational and memory demands of fine-tuning large language models (LLMs) by approximating updates with low-rank matrices. However, low-rank approximation in two-dimensional space fails to capture high-dimensional structures within the target matrix. Recently, tensor decomposition methods have been explored for fine-tuning LLMs, leveraging their ability to extract structured information. Yet, these approaches primarily rely on random initialization, and the impact of initialization on tensor adaptation remains underexplored. In this paper, we reveal that random initialization significantly diverges from the validation loss achieved by full fine-tuning. To address this, we propose Weight-Decomposed Tensor Adaptation (DoTA), which leverages the Matrix Product Operator (MPO) decomposition of pre-trained weights for effective initialization in fine-tuning LLMs. Additionally, we introduce QDoTA, a quantized version of DoTA designed for 4-bit quantization. Experiments on commonsense and arithmetic reasoning tasks show that DoTA outperforms random initialization methods with fewer parameters. QDoTA further reduces memory consumption and achieves comparable performance to DoTA on commonsense reasoning tasks. We will release our code to support future research.