Southeast University, China
Abstract:Document parsing is essential for converting unstructured and semi-structured documents-such as contracts, academic papers, and invoices-into structured, machine-readable data. Document parsing extract reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It emphasizes the importance of developing larger and more diverse datasets and outlines future research directions.
Abstract:Many positional encodings (PEs) are designed to exhibit long-term decay, based on an entrenched and long-standing inductive opinion: tokens farther away from the current position carry less relevant information. We argue that long-term decay is outdated in the era of LLMs, as LLMs are now applied to tasks demanding precise retrieval of in-context information from arbitrary positions. Firstly, we present empirical analyses on various PEs, demonstrating that models inherently learn attention with only a local-decay pattern while forming a U-shape pattern globally, contradicting the principle of long-term decay. Furthermore, we conduct a detailed analysis of rotary position encoding (RoPE, a prevalent relative positional encoding in LLMs), and found that the U-shape attention is caused by some learned components, which are also the key factor limiting RoPE's expressiveness and extrapolation.Inspired by these insights, we propose High-frequency rotary Position Encoding (HoPE). HoPE replaces the specific components in RoPE with position-independent ones, retaining only high-frequency signals, which also breaks the principle of long-term decay in theory. HoPE achieves two major advantages: (1) Without constraints imposed by long-term decay, contradictory factors that limit spontaneous attention optimization and model extrapolation performance are removed. (2) Components representing positions and semantics are are optimized. These enhances model's context awareness and extrapolation, as validated by extensive experiments.
Abstract:Diffusion models have achieved remarkable progress in the field of image generation due to their outstanding capabilities. However, these models require substantial computing resources because of the multi-step denoising process during inference. While traditional pruning methods have been employed to optimize these models, the retraining process necessitates large-scale training datasets and extensive computational costs to maintain generalization ability, making it neither convenient nor efficient. Recent studies attempt to utilize the similarity of features across adjacent denoising stages to reduce computational costs through simple and static strategies. However, these strategies cannot fully harness the potential of the similar feature patterns across adjacent timesteps. In this work, we propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner. At the core of our approach is casting the model pruning process into a SubNet search process. Specifically, we first introduce a SuperNet based on standard diffusion via adding some backup connections built upon the similar features. We then construct a plugin pruner network and design optimization losses to identify redundant computation. Finally, our method can identify an optimal SubNet through few-step gradient optimization and a simple post-processing procedure. We conduct extensive experiments on various diffusion models including Stable Diffusion series and DiTs. Our DiP-GO approach achieves 4.4 x speedup for SD-1.5 without any loss of accuracy, significantly outperforming the previous state-of-the-art methods.
Abstract:Semantic segmentation of remote sensing (RS) images is a challenging task with significant potential across various applications. Deep learning, especially supervised learning with large-scale labeled datasets, has greatly advanced this field. However, acquiring high-quality labeled data is expensive and time-consuming. Moreover, variations in ground sampling distance (GSD), imaging equipment, and geographic diversity contribute to domain shifts between datasets, which pose significant challenges to models trained solely on source domain data, leading to poor cross-domain performance. Domain shift is well-known for undermining a model's generalization ability in the target domain. To address this, unsupervised domain adaptation (UDA) has emerged as a promising solution, enabling models to learn from unlabeled target domain data while training on labeled source domain data. Recent advancements, particularly in self-supervised learning via pseudo-label generation, have shown potential in mitigating domain discrepancies. Strategies combining source and target domain images with their true and pseudo labels for self-supervised training have been effective in addressing domain bias. Despite progress in computer vision, the application of pseudo-labeling methods to RS image segmentation remains underexplored.
Abstract:Interactive segmentation aims to accurately segment target objects with minimal user interactions. However, current methods often fail to accurately separate target objects from the background, due to a limited understanding of order, the relative depth between objects in a scene. To address this issue, we propose OIS: order-aware interactive segmentation, where we explicitly encode the relative depth between objects into order maps. We introduce a novel order-aware attention, where the order maps seamlessly guide the user interactions (in the form of clicks) to attend to the image features. We further present an object-aware attention module to incorporate a strong object-level understanding to better differentiate objects with similar order. Our approach allows both dense and sparse integration of user clicks, enhancing both accuracy and efficiency as compared to prior works. Experimental results demonstrate that OIS achieves state-of-the-art performance, improving mIoU after one click by 7.61 on the HQSeg44K dataset and 1.32 on the DAVIS dataset as compared to the previous state-of-the-art SegNext, while also doubling inference speed compared to current leading methods. The project page is https://ukaukaaaa.github.io/projects/OIS/index.html
Abstract:Document Layout Analysis is crucial for real-world document understanding systems, but it encounters a challenging trade-off between speed and accuracy: multimodal methods leveraging both text and visual features achieve higher accuracy but suffer from significant latency, whereas unimodal methods relying solely on visual features offer faster processing speeds at the expense of accuracy. To address this dilemma, we introduce DocLayout-YOLO, a novel approach that enhances accuracy while maintaining speed advantages through document-specific optimizations in both pre-training and model design. For robust document pre-training, we introduce the Mesh-candidate BestFit algorithm, which frames document synthesis as a two-dimensional bin packing problem, generating the large-scale, diverse DocSynth-300K dataset. Pre-training on the resulting DocSynth-300K dataset significantly improves fine-tuning performance across various document types. In terms of model optimization, we propose a Global-to-Local Controllable Receptive Module that is capable of better handling multi-scale variations of document elements. Furthermore, to validate performance across different document types, we introduce a complex and challenging benchmark named DocStructBench. Extensive experiments on downstream datasets demonstrate that DocLayout-YOLO excels in both speed and accuracy. Code, data, and models are available at https://github.com/opendatalab/DocLayout-YOLO.
Abstract:Magnetotelluric deep learning (DL) inversion methods based on joint data-driven and physics-driven have become a hot topic in recent years. When mapping observation data (or forward modeling data) to the resistivity model using neural networks (NNs), incorporating the error (loss) term of the inversion resistivity's forward modeling response--which introduces physical information about electromagnetic field propagation--can significantly enhance the inversion accuracy. To efficiently achieve data-physical dual-driven MT deep learning inversion for large-scale 3-D MT data, we propose using DL forward modeling networks to compute this portion of the loss. This approach introduces pseudo-physical information through the forward modeling of NN simulation, further guiding the inversion network fitting. Specifically, we first pre-train the forward modeling networks as fixed forward modeling operators, then transfer and integrate them into the inversion network training, and finally optimize the inversion network by minimizing the multinomial loss. Theoretical experimental results indicate that despite some simulation errors in DL forward modeling, the introduced pseudo-physical information still enhances inversion accuracy and significantly mitigates the overfitting problem during training. Additionally, we propose a new input mode that involves masking and adding noise to the data, simulating the field data environment of 3-D MT inversion, thereby making the method more flexible and effective for practical applications.
Abstract:Model Inversion Attacks (MIAs) aim at recovering privacy-sensitive training data from the knowledge encoded in the released machine learning models. Recent advances in the MIA field have significantly enhanced the attack performance under multiple scenarios, posing serious privacy risks of Deep Neural Networks (DNNs). However, the development of defense strategies against MIAs is relatively backward to resist the latest MIAs and existing defenses fail to achieve further trade-off between model utility and model robustness. In this paper, we provide an in-depth analysis from the perspective of intrinsic vulnerabilities of MIAs, comprehensively uncovering the weaknesses inherent in the basic pipeline, which are partially investigated in the previous defenses. Building upon these new insights, we propose a robust defense mechanism, integrating Confidence Adaptation and Low-Rank compression(CALoR). Our method includes a novel robustness-enhanced classification loss specially-designed for model inversion defenses and reveals the extraordinary effectiveness of compressing the classification header. With CALoR, we can mislead the optimization objective, reduce the leaked information and impede the backpropagation of MIAs, thus mitigating the risk of privacy leakage. Extensive experimental results demonstrate that our method achieves state-of-the-art (SOTA) defense performance against MIAs and exhibits superior generalization to existing defenses across various scenarios.
Abstract:Document content analysis has been a crucial research area in computer vision. Despite significant advancements in methods such as OCR, layout detection, and formula recognition, existing open-source solutions struggle to consistently deliver high-quality content extraction due to the diversity in document types and content. To address these challenges, we present MinerU, an open-source solution for high-precision document content extraction. MinerU leverages the sophisticated PDF-Extract-Kit models to extract content from diverse documents effectively and employs finely-tuned preprocessing and postprocessing rules to ensure the accuracy of the final results. Experimental results demonstrate that MinerU consistently achieves high performance across various document types, significantly enhancing the quality and consistency of content extraction. The MinerU open-source project is available at https://github.com/opendatalab/MinerU.
Abstract:Low-rank adaptation (LoRA) and its variants have recently gained much interest due to their ability to avoid excessive inference costs. However, LoRA still encounters the following challenges: (1) Limitation of low-rank assumption; and (2) Its initialization method may be suboptimal. To this end, we propose PMSS(Pre-trained Matrices Skeleton Selection), which enables high-rank updates with low costs while leveraging semantic and linguistic information inherent in pre-trained weight. It achieves this by selecting skeletons from the pre-trained weight matrix and only learning a small matrix instead. Experiments demonstrate that PMSS outperforms LoRA and other fine-tuning methods across tasks with much less trainable parameters. We demonstrate its effectiveness, especially in handling complex tasks such as DROP benchmark(+3.4%/+5.9% on LLaMA2-7B/13B) and math reasoning(+12.89%/+5.61%/+3.11% on LLaMA2-7B, Mistral-7B and Gemma-7B of GSM8K). The code and model will be released soon.