David
Abstract:Reconfigurable holographic surfaces (RHSs) have been suggested as an energy-efficient solution for extremely large-scale arrays. By controlling the amplitude of RHS elements, high-gain directional holographic patterns can be achieved. However, the complexity of acquiring real-time channel state information (CSI) for beamforming is exceedingly high, particularly in large-scale RHS-assisted communications, where users may distribute in the near-field region of RHS. This paper proposes a one-shot multi-user beam training scheme in large-scale RHS-assisted systems applicable to both near and far fields. The proposed beam training scheme comprises two phases: angle search and distance search, both conducted simultaneously for all users. For the angle search, an RHS angular codebook is designed based on holographic principles so that each codeword covers multiple angles in both near-field and far-field regions, enabling simultaneous angular search for all users. For the distance search, we construct the distance-adaptive codewords covering all candidate angles of users in a real-time way by leveraging the additivity of holographic patterns, which is different from the traditional phase array case. Simulation results demonstrate that the proposed scheme achieves higher system throughput compared to traditional beam training schemes. The beam training accuracy approaches the upper bound of exhaustive search at a significantly reduced overhead.
Abstract:The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing. These methods are used for state estimation of dynamic systems by relying on mathematical representations in the form of simple state-space (SS) models, which may be crude and inaccurate descriptions of the underlying dynamics. Emerging data-centric artificial intelligence (AI) techniques tackle these tasks using deep neural networks (DNNs), which are model-agnostic. Recent developments illustrate the possibility of fusing DNNs with classic Kalman-type filtering, obtaining systems that learn to track in partially known dynamics. This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms. We review both generic and dedicated DNN architectures suitable for state estimation, and provide a systematic presentation of techniques for fusing AI tools with KFs and for leveraging partial SS modeling and data, categorizing design approaches into task-oriented and SS model-oriented. The usefulness of each approach in preserving the individual strengths of model-based KFs and data-driven DNNs is investigated in a qualitative and quantitative study, whose code is publicly available, illustrating the gains of hybrid model-based/data-driven designs. We also discuss existing challenges and future research directions that arise from fusing AI and Kalman-type algorithms.
Abstract:In this article, we propose new network architectures that integrate multi-functional reconfigurable intelligent surfaces (MF-RISs) into 6G networks to enhance both communication and sensing capabilities. Firstly, we elaborate how to leverage MF-RISs for improving communication performance in different communication modes including unicast, mulitcast, and broadcast and for different multi-access schemes. Next, we emphasize synergistic benefits of integrating MF-RISs with wireless sensing, enabling more accurate and efficient target detection in 6G networks. Furthermore, we present two schemes that utilize MF-RISs to enhance the performance of integrated sensing and communication (ISAC). We also study multi-objective optimization to achieve the optimal trade-off between communication and sensing performance. Finally, we present numerical results to show the performance improvements offered by MF-RISs compared to conventional RISs in ISAC. We also outline key research directions for MF-RIS under the ambition of 6G.
Abstract:Channel estimation poses significant challenges in millimeter-wave massive multiple-input multiple-output systems, especially when the base station has fewer radio-frequency chains than antennas. To address this challenge, one promising solution exploits the beamspace channel sparsity to reconstruct full-dimensional channels from incomplete measurements. This paper presents a model-based deep learning method to reconstruct sparse, as well as approximately sparse, vectors fast and accurately. To implement this method, we propose a trimmed-ridge regression that transforms the sparse-reconstruction problem into a least-squares problem regularized by a nonconvex penalty term, and then derive an iterative solution. We then unfold the iterations into a deep network that can be implemented in online applications to realize real-time computations. To this end, an unfolded trimmed-ridge regression model is constructed using a structural configuration to reduce computational complexity and a model ensemble strategy to improve accuracy. Compared with other state-of-the-art deep learning models, the proposed learning scheme achieves better accuracy and supports higher downlink sum rates.
Abstract:Extremely large-scale antenna arrays are poised to play a pivotal role in sixth-generation (6G) networks. Utilizing such arrays often results in a near-field spherical wave transmission environment, enabling the generation of focused beams, which introduces new degrees of freedom for wireless localization. In this paper, we consider a beam-focusing design for localizing multiple sources in the radiating near-field. Our formulation accommodates various expected types of implementations of large antenna arrays, including hybrid analog/digital architectures and dynamic metasurface antennas (DMAs). We consider a direct localization estimation method exploiting curvature-of-arrival of impinging spherical wavefront to obtain user positions. In this regard, we adopt a two-stage approach configuring the array to optimize near-field positioning. In the first step, we focus only on adjusting the array coefficients to minimize the estimation error. We obtain a closed-form approximate solution based on projection and the better one based on the Riemann gradient algorithm. We then extend this approach to simultaneously localize and focus the beams via a sub-optimal iterative approach that does not rely on such knowledge. The simulation results show that near-field localization accuracy based on a hybrid array or DMA can achieve performance close to that of fully digital arrays at a lower cost, and DMAs can attain better performance than hybrid solutions with the same aperture.
Abstract:Holographic MIMO communications, enabled by large-scale antenna arrays with quasi-continuous apertures, is a potential technology for spectrum efficiency improvement. However, the increased antenna aperture size extends the range of the Fresnel region, leading to a hybrid near-far field communication mode. The users and scatterers randomly lie in near-field and far-field zones, and thus, conventional far-field-only and near-field-only channel estimation methods may not work. To tackle this challenge, we demonstrate the existence of the power diffusion (PD) effect, which leads to a mismatch between the hybrid-field channel and existing channel estimation methods. Specifically, in far-field and near-field transform domains, the power gain of one channel path may diffuse to other positions, thus generating fake paths. This renders the conventional techniques unable to detect those real paths. We propose a PD-aware orthogonal matching pursuit algorithm to eliminate the influence of the PD effect by identifying the PD range within which paths diffuse to other positions. PD-OMP fits a general case without prior knowledge of near-field and far-field path numbers and the user's location. The computational complexity of PD-OMP and the Cramer-Rao Lower Bound for the sparse-signal-recovery-based channel estimation are also derived. Simulation results show that PD-OMP outperforms state-of-the-art hybrid-field channel estimation methods.
Abstract:The research topic is: data-driven Bayesian state estimation with compressed measurement (BSCM) of model-free process, say for a (causal) tracking application. The dimension of the temporal measurement vector is lower than the dimension of the temporal state vector to be estimated. Hence the state estimation problem is an underdetermined inverse problem. The state-space-model (SSM) of the underlying dynamical process is assumed to be unknown and hence, we use the terminology 'model-free process'. In absence of the SSM, we can not employ traditional model-driven methods like Kalman Filter (KF) and Particle Filter (PF) and instead require data-driven methods. We first experimentally show that two existing unsupervised learning-based data-driven methods fail to address the BSCM problem for model-free process; they are data-driven nonlinear state estimation (DANSE) method and deep Markov model (DMM) method. The unsupervised learning uses unlabelled data comprised of only noisy measurements. While DANSE provides a good predictive performance to model the temporal measurement data as time-series, its unsupervised learning lacks a regularization for state estimation. We then investigate use of a semi-supervised learning approach, and develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE. In the semi-supervised learning, we use a limited amount of labelled data along-with a large amount of unlabelled data, and that helps to bring the desired regularization for BSCM problem in the absence of SSM. The labelled data means pairwise measurement-and-state data. Using three chaotic dynamical systems (or processes) with nonlinear SSMs as benchmark, we show that the data-driven SemiDANSE provides competitive performance for BSCM against three SSM-informed methods - a hybrid method called KalmanNet, and two traditional model-driven methods called extended KF and unscented KF.
Abstract:Sixth-generation (6G) networks are poised to revolutionize communication by exploring alternative spectrum options, aiming to capitalize on strengths while mitigating limitations in current fifth-generation (5G) spectrum. This paper explores the potential opportunities and emerging trends for cmWave and sub-THz spectra as key radio enablers. This paper poses and answers three key questions regarding motivation of additional spectrum to explore the strategic implementation and benefits of cmWave and sub-THz spectra. Also, we show using case studies how these complementary spectrum bands will enable new applications in 6G, such as integrated sensing and communication (ISAC), re-configurable intelligent surfaces (RIS) and non-terrestrial networks (NTN). Numerical simulations reveal that the ISAC performance of cmWave and sub-THz spectra outperforms that of existing 5G spectrum, including sub-6 GHz and mmWave. Additionally, we illustrate the effective interplay between RIS and NTN to counteract the effects of high attenuation at sub-THz frequencies. Finally, ongoing standardization endeavors, challenges and promising directions are elucidated for these complementary spectrum bands.
Abstract:Sampling shift-invariant (SI) signals with a high dynamic range poses a notable challenge in the domain of analog-to-digital conversion (ADC). It is essential for the ADC's dynamic range to exceed that of the incoming analog signal to ensure no vital information is lost during the conversion process. Modulo sampling, an approach initially explored with bandlimited (BL) signals, offers a promising solution to overcome the constraints of dynamic range. In this paper, we expand on the recent advancements in modulo sampling to encompass a broader range of SI signals. Our proposed strategy incorporates analog preprocessing, including the use of a mixer and a low-pass filter (LPF), to transform the signal into a bandlimited one. This BL signal can be accurately reconstructed from its modulo samples if sampled at slightly above its Nyquist frequency. The recovery of the original SI signal from this BL representation is then achieved through suitable filtering. We also examine the efficacy of this system across various noise conditions. Careful choice of the mixer plays a pivotal role in enhancing the method's reliability, especially with generators prone to instability. Our approach thus broadens the framework of modulo sampling's utility in efficiently recovering SI signals, pushing its boundaries beyond BL signals while sampling only slightly above the rate needed for a SI signal.
Abstract:Traditional discrete-array-based systems fail to exploit interactions between closely spaced antennas, resulting in inadequate utilization of the aperture resource. In this paper, we propose a holographic intelligence surface (HIS) assisted integrated sensing and communication (HISAC) system, wherein both the transmitter and receiver are fabricated using a continuous-aperture array. A continuous-discrete transformation of the HIS pattern based on the Fourier transform is proposed, converting the continuous pattern design into a discrete beamforming design. We formulate a joint transmit-receive beamforming optimization problem for the HISAC system, aiming to balance the performance of multi-target sensing while fulfilling the performance requirement of multi-user communication. To solve the non-convex problem with coupled variables, an alternating optimization-based algorithm is proposed to optimize the HISAC transmit-receive beamforming in an alternate manner. Specifically, the transmit beamforming design is solved by decoupling into a series of feasibility-checking sub-problems while the receive beamforming is determined by the Rayleigh quotient-based method. Simulation results demonstrate the superiority of the proposed HISAC system over traditional discrete-array-based ISAC systems, achieving significantly higher sensing performance while guaranteeing predetermined communication performance.