Abstract:Language Models (LMs) have been shown to exhibit a strong preference towards entities associated with Western culture when operating in non-Western languages. In this paper, we aim to uncover the origins of entity-related cultural biases in LMs by analyzing several contributing factors, including the representation of entities in pre-training data and the impact of variations in linguistic phenomena across languages. We introduce CAMeL-2, a parallel Arabic-English benchmark of 58,086 entities associated with Arab and Western cultures and 367 masked natural contexts for entities. Our evaluations using CAMeL-2 reveal reduced performance gaps between cultures by LMs when tested in English compared to Arabic. We find that LMs struggle in Arabic with entities that appear at high frequencies in pre-training, where entities can hold multiple word senses. This also extends to entities that exhibit high lexical overlap with languages that are not Arabic but use the Arabic script. Further, we show how frequency-based tokenization leads to this issue in LMs, which gets worse with larger Arabic vocabularies. We will make CAMeL-2 available at: https://github.com/tareknaous/camel2
Abstract:Sleep disorders have a major impact on both lifestyle and health. Effective sleep disorder prediction from lifestyle and physiological data can provide essential details for early intervention. This research utilizes three deep time series models and facilitates them with explainability approaches for sleep disorder prediction. Specifically, our approach adopts Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) for time series data analysis, and Temporal Fusion Transformer model (TFT). Meanwhile, the temporal attention mechanism and counterfactual explanation with SHapley Additive exPlanations (SHAP) approach are employed to ensure dependable, accurate, and interpretable predictions. Finally, using a large dataset of sleep health measures, our evaluation demonstrates the effect of our method in predicting sleep disorders.
Abstract:Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
Abstract:In pseudonymous online fora like Reddit, the benefits of self-disclosure are often apparent to users (e.g., I can vent about my in-laws to understanding strangers), but the privacy risks are more abstract (e.g., will my partner be able to tell that this is me?). Prior work has sought to develop natural language processing (NLP) tools that help users identify potentially risky self-disclosures in their text, but none have been designed for or evaluated with the users they hope to protect. Absent this assessment, these tools will be limited by the social-technical gap: users need assistive tools that help them make informed decisions, not paternalistic tools that tell them to avoid self-disclosure altogether. To bridge this gap, we conducted a study with N = 21 Reddit users; we had them use a state-of-the-art NLP disclosure detection model on two of their authored posts and asked them questions to understand if and how the model helped, where it fell short, and how it could be improved to help them make more informed decisions. Despite its imperfections, users responded positively to the model and highlighted its use as a tool that can help them catch mistakes, inform them of risks they were unaware of, and encourage self-reflection. However, our work also shows how, to be useful and usable, AI for supporting privacy decision-making must account for posting context, disclosure norms, and users' lived threat models, and provide explanations that help contextualize detected risks.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, a detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM are presented in the context of electromagnetic signal processing.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, the detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM is provided in the aspect of electromagnetic signal processing.
Abstract:Instruction tuning has underscored the significant potential of large language models (LLMs) in producing more human-controllable and effective outputs in various domains. In this work, we focus on the data selection problem for task-specific instruction tuning of LLMs. Prevailing methods primarily rely on the crafted similarity metrics to select training data that aligns with the test data distribution. The goal is to minimize instruction tuning loss on the test data, ultimately improving performance on the target task. However, it has been widely observed that instruction tuning loss (i.e., cross-entropy loss for next token prediction) in LLMs often fails to exhibit a monotonic relationship with actual task performance. This misalignment undermines the effectiveness of current data selection methods for task-specific instruction tuning. To address this issue, we introduce ROSE, a novel Reward-Oriented inStruction data sElection method which leverages pairwise preference loss as a reward signal to optimize data selection for task-specific instruction tuning. Specifically, ROSE adapts an influence formulation to approximate the influence of training data points relative to a few-shot preference validation set to select the most task-related training data points. Experimental results show that by selecting just 5% of the training data using ROSE, our approach can achieve competitive results compared to fine-tuning with the full training dataset, and it surpasses other state-of-the-art data selection methods for task-specific instruction tuning. Our qualitative analysis further confirms the robust generalizability of our method across multiple benchmark datasets and diverse model architectures.
Abstract:Given a single image of a target object, image-to-3D generation aims to reconstruct its texture and geometric shape. Recent methods often utilize intermediate media, such as multi-view images or videos, to bridge the gap between input image and the 3D target, thereby guiding the generation of both shape and texture. However, inconsistencies in the generated multi-view snapshots frequently introduce noise and artifacts along object boundaries, undermining the 3D reconstruction process. To address this challenge, we leverage 3D Gaussian Splatting (3DGS) for 3D reconstruction, and explicitly integrate uncertainty-aware learning into the reconstruction process. By capturing the stochasticity between two Gaussian models, we estimate an uncertainty map, which is subsequently used for uncertainty-aware regularization to rectify the impact of inconsistencies. Specifically, we optimize both Gaussian models simultaneously, calculating the uncertainty map by evaluating the discrepancies between rendered images from identical viewpoints. Based on the uncertainty map, we apply adaptive pixel-wise loss weighting to regularize the models, reducing reconstruction intensity in high-uncertainty regions. This approach dynamically detects and mitigates conflicts in multi-view labels, leading to smoother results and effectively reducing artifacts. Extensive experiments show the effectiveness of our method in improving 3D generation quality by reducing inconsistencies and artifacts.
Abstract:Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.
Abstract:Retrieval-augmented generation (RAG) is a promising approach to address the limitations of fixed knowledge in large language models (LLMs). However, current benchmarks for evaluating RAG systems suffer from two key deficiencies: (1) they fail to adequately measure LLMs' capability in handling long-context retrieval due to a lack of datasets that reflect the characteristics of retrieved documents, and (2) they lack a comprehensive evaluation method for assessing LLMs' ability to generate long-form responses that effectively exploits retrieved information. To address these shortcomings, we introduce the Long$^2$RAG benchmark and the Key Point Recall (KPR) metric. Long$^2$RAG comprises 280 questions spanning 10 domains and across 8 question categories, each associated with 5 retrieved documents with an average length of 2,444 words. KPR evaluates the extent to which LLMs incorporate key points extracted from the retrieved documents into their generated responses, providing a more nuanced assessment of their ability to exploit retrieved information.