Abstract:Grant-free transmission and cell-free communication are vital in improving coverage and quality-of-service for massive machine-type communication. This paper proposes a novel framework of joint active user detection, channel estimation, and data detection (JACD) for massive grant-free transmission in cell-free wireless communication systems. We formulate JACD as an optimization problem and solve it approximately using forward-backward splitting. To deal with the discrete symbol constraint, we relax the discrete constellation to its convex hull and propose two approaches that promote solutions from the constellation set. To reduce complexity, we replace costly computations with approximate shrinkage operations and approximate posterior mean estimator computations. To improve active user detection (AUD) performance, we introduce a soft-output AUD module that considers both the data estimates and channel conditions. To jointly optimize all algorithm hyper-parameters and to improve JACD performance, we further deploy deep unfolding together with a momentum strategy, resulting in two algorithms called DU-ABC and DU-POEM. Finally, we demonstrate the efficacy of the proposed JACD algorithms via extensive system simulations.
Abstract:Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent's Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents. We will release our code upon request.
Abstract:This paper considers a joint scattering environment sensing and data recovery problem in an uplink integrated sensing and communication (ISAC) system. To facilitate joint scatterers localization and multi-user (MU) channel estimation, we introduce a three-dimensional (3D) location-domain sparse channel model to capture the joint sparsity of the MU channel (i.e., different user channels share partially overlapped scatterers). Then the joint problem is formulated as a bilinear structured sparse recovery problem with a dynamic position grid and imperfect parameters (such as time offset and user position errors). We propose an expectation maximization based turbo bilinear subspace variational Bayesian inference (EM-Turbo-BiSVBI) algorithm to solve the problem effectively, where the E-step performs Bayesian estimation of the the location-domain sparse MU channel by exploiting the joint sparsity, and the M-step refines the dynamic position grid and learns the imperfect factors via gradient update. Two methods are introduced to greatly reduce the complexity with almost no sacrifice on the performance and convergence speed: 1) a subspace constrained bilinear variational Bayesian inference (VBI) method is proposed to avoid any high-dimensional matrix inverse; 2) the multiple signal classification (MUSIC) and subspace constrained VBI methods are combined to obtain a coarse estimation result to reduce the search range. Simulations verify the advantages of the proposed scheme over baseline schemes.
Abstract:Over-the-air computation (AirComp) integrates analog communication with task-oriented computation, serving as a key enabling technique for communication-efficient federated learning (FL) over wireless networks. However, owing to its analog characteristics, AirComp-enabled FL (AirFL) is vulnerable to both unintentional and intentional interference. In this paper, we aim to attain robustness in AirComp aggregation against interference via reconfigurable intelligent surface (RIS) technology to artificially reconstruct wireless environments. Concretely, we establish performance objectives tailored for interference suppression in wireless FL systems, aiming to achieve unbiased gradient estimation and reduce its mean square error (MSE). Oriented at these objectives, we introduce the concept of phase-manipulated favorable propagation and channel hardening for AirFL, which relies on the adjustment of RIS phase shifts to realize statistical interference elimination and reduce the error variance of gradient estimation. Building upon this concept, we propose two robust aggregation schemes of power control and RIS phase shifts design, both ensuring unbiased gradient estimation in the presence of interference. Theoretical analysis of the MSE and FL convergence affirms the anti-interference capability of the proposed schemes. It is observed that computation and interference errors diminish by an order of $\mathcal{O}\left(\frac{1}{N}\right)$ where $N$ is the number of RIS elements, and the ideal convergence rate without interference can be asymptotically achieved by increasing $N$. Numerical results confirm the analytical results and validate the superior performance of the proposed schemes over existing baselines.
Abstract:Language Models (LMs) have been shown to exhibit a strong preference towards entities associated with Western culture when operating in non-Western languages. In this paper, we aim to uncover the origins of entity-related cultural biases in LMs by analyzing several contributing factors, including the representation of entities in pre-training data and the impact of variations in linguistic phenomena across languages. We introduce CAMeL-2, a parallel Arabic-English benchmark of 58,086 entities associated with Arab and Western cultures and 367 masked natural contexts for entities. Our evaluations using CAMeL-2 reveal reduced performance gaps between cultures by LMs when tested in English compared to Arabic. We find that LMs struggle in Arabic with entities that appear at high frequencies in pre-training, where entities can hold multiple word senses. This also extends to entities that exhibit high lexical overlap with languages that are not Arabic but use the Arabic script. Further, we show how frequency-based tokenization leads to this issue in LMs, which gets worse with larger Arabic vocabularies. We will make CAMeL-2 available at: https://github.com/tareknaous/camel2
Abstract:Sleep disorders have a major impact on both lifestyle and health. Effective sleep disorder prediction from lifestyle and physiological data can provide essential details for early intervention. This research utilizes three deep time series models and facilitates them with explainability approaches for sleep disorder prediction. Specifically, our approach adopts Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) for time series data analysis, and Temporal Fusion Transformer model (TFT). Meanwhile, the temporal attention mechanism and counterfactual explanation with SHapley Additive exPlanations (SHAP) approach are employed to ensure dependable, accurate, and interpretable predictions. Finally, using a large dataset of sleep health measures, our evaluation demonstrates the effect of our method in predicting sleep disorders.
Abstract:Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
Abstract:In pseudonymous online fora like Reddit, the benefits of self-disclosure are often apparent to users (e.g., I can vent about my in-laws to understanding strangers), but the privacy risks are more abstract (e.g., will my partner be able to tell that this is me?). Prior work has sought to develop natural language processing (NLP) tools that help users identify potentially risky self-disclosures in their text, but none have been designed for or evaluated with the users they hope to protect. Absent this assessment, these tools will be limited by the social-technical gap: users need assistive tools that help them make informed decisions, not paternalistic tools that tell them to avoid self-disclosure altogether. To bridge this gap, we conducted a study with N = 21 Reddit users; we had them use a state-of-the-art NLP disclosure detection model on two of their authored posts and asked them questions to understand if and how the model helped, where it fell short, and how it could be improved to help them make more informed decisions. Despite its imperfections, users responded positively to the model and highlighted its use as a tool that can help them catch mistakes, inform them of risks they were unaware of, and encourage self-reflection. However, our work also shows how, to be useful and usable, AI for supporting privacy decision-making must account for posting context, disclosure norms, and users' lived threat models, and provide explanations that help contextualize detected risks.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, a detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM are presented in the context of electromagnetic signal processing.
Abstract:Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, the detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM is provided in the aspect of electromagnetic signal processing.