Abstract:In mobile edge computing (MEC) systems, the wireless channel condition is a critical factor affecting both the communication power consumption and computation rate of the offloading tasks. This paper exploits the idea of cooperative transmission and employing reconfigurable intelligent surface (RIS) in MEC to improve the channel condition and maximize computation efficiency (CE). The resulting problem couples various wireless resources in both uplink and downlink, which calls for the joint design of the user association, receive/downlink beamforming vectors, transmit power of users, task partition strategies for local computing and offloading, and uplink/downlink phase shifts at the RIS. To tackle the challenges brought by the combinatorial optimization problem, the group sparsity structure of the beamforming vectors determined by user association is exploited. Furthermore, while the CE does not explicitly depend on the downlink phase shifts, instead of simply finding a feasible solution, we exploit the hidden relationship between them and convert this relationship into an explicit form for optimization. Then the resulting problem is solved via the alternating maximization framework, and the nonconvexity of each subproblem is handled individually. Simulation results show that cooperative transmission and RIS deployment can significantly improve the CE and demonstrate the importance of optimizing the downlink phase shifts with an explicit form.
Abstract:Optical packet header recognition is an important signal processing task of optical communication networks. In this work, we propose an all-optical reservoir, consisting of integrated double-ring resonators (DRRs) as nodes, for fast and accurate optical packet header recognition. As the delay-bandwidth product (DBP) of the node is a key figure-of-merit in the reservoir, we adopt a deep reinforcement learning algorithm to maximize the DBPs for various types of DRRs, which has the advantage of full parameter space optimization and fast convergence speed. Intriguingly, the optimized DBPs of the DRRs in cascaded, parallel, and embedded configurations reach the same maximum value, which is believed to be the global maximum. Finally, 3-bit and 6-bit packet header recognition tasks are performed with the all-optical reservoir consisting of the optimized cascaded rings, which have greatly reduced chip size and the desired "flat-top" delay spectra. Using this optical computing scheme, word-error rates as low as 5*10-4 and 9*10-4 are achieved for 3-bit and 6-bit packet header recognition tasks, respectively, which are one order of magnitude better than the previously reported values.
Abstract:In this paper, simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) is investigated in the multi-user mobile edge computing (MEC) system to improve the computation rate. Compared with traditional RIS-aided MEC, STAR-RIS extends the service coverage from half-space to full-space and provides new flexibility for improving the computation rate for end users. However, the STAR-RIS-aided MEC system design is a challenging problem due to the non-smooth and non-convex binary amplitude coefficients with coupled phase shifters. To fill this gap, this paper formulates a computation rate maximization problem via the joint design of the STAR-RIS phase shifts, reflection and transmission amplitude coefficients, the receive beamforming vectors, and energy partition strategies for local computing and offloading. To tackle the discontinuity caused by binary variables, we propose an efficient smoothing-based method to decrease convergence error, in contrast to the conventional penalty-based method, which brings many undesired stationary points and local optima. Furthermore, a fast iterative algorithm is proposed to obtain a stationary point for the joint optimization problem, with each subproblem solved by a low-complexity algorithm, making the proposed design scalable to a massive number of users and STAR-RIS elements. Simulation results validate the strength of the proposed smoothing-based method and show that the proposed fast iterative algorithm achieves a higher computation rate than the conventional method while saving the computation time by at least an order of magnitude. Moreover, the resultant STAR-RIS-aided MEC system significantly improves the computation rate compared to other baseline schemes with conventional reflect-only/transmit-only RIS.
Abstract:Edge-assisted vehicle-to-everything (V2X) motion planning is an emerging paradigm to achieve safe and efficient autonomous driving, since it leverages the global position information shared among multiple vehicles. However, due to the imperfect channel state information (CSI), the position information of vehicles may become outdated and inaccurate. Conventional methods ignoring the communication delays could severely jeopardize driving safety. To fill this gap, this paper proposes a robust V2X motion planning policy that adapts between competitive driving under a low communication delay and conservative driving under a high communication delay, and guarantees small communication delays at key waypoints via power control. This is achieved by integrating the vehicle mobility and communication delay models and solving a joint design of motion planning and power control problem via the block coordinate descent framework. Simulation results show that the proposed driving policy achieves the smallest collision ratio compared with other benchmark policies.
Abstract:In this paper, the novel simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS), which enables full-space coverage on users located on both sides of the surface, is investigated in the multi-user mobile edge computing (MEC) system. A computation rate maximization problem is formulated via the joint design of the STAR-RIS phase shifts, reflection and transmission amplitude coefficients, the receive beamforming vectors at the access point, and the users' energy partition strategies for local computing and offloading. Two operating protocols of STAR-RIS, namely energy splitting (ES) and mode switching (MS) are studied. Based on DC programming and semidefinite relaxation, an iterative algorithm is proposed for the ES protocol to solve the formulated non-convex problem. Furthermore, the proposed algorithm is extended to solve the non-convex, non-continuous MS problems with binary amplitude coefficients. Simulation results show that the resultant STAR-RIS-aided MEC system significantly improves the computation rate compared to the baseline scheme with conventional reflect-only/transmit-only RIS.
Abstract:Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks. To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources, such as beamformers, transmit power, and computation time. However, due to the unique constraints on the phase shift, and massive numbers of reflecting units and users in large-scale networks, the resulting optimization problems are challenging to solve. This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS and compares them in terms of solution quality and computational complexity. Future challenges in phase shift optimization involving RISs are also described and potential solutions are discussed.