Abstract:In mobile edge computing (MEC) systems, the wireless channel condition is a critical factor affecting both the communication power consumption and computation rate of the offloading tasks. This paper exploits the idea of cooperative transmission and employing reconfigurable intelligent surface (RIS) in MEC to improve the channel condition and maximize computation efficiency (CE). The resulting problem couples various wireless resources in both uplink and downlink, which calls for the joint design of the user association, receive/downlink beamforming vectors, transmit power of users, task partition strategies for local computing and offloading, and uplink/downlink phase shifts at the RIS. To tackle the challenges brought by the combinatorial optimization problem, the group sparsity structure of the beamforming vectors determined by user association is exploited. Furthermore, while the CE does not explicitly depend on the downlink phase shifts, instead of simply finding a feasible solution, we exploit the hidden relationship between them and convert this relationship into an explicit form for optimization. Then the resulting problem is solved via the alternating maximization framework, and the nonconvexity of each subproblem is handled individually. Simulation results show that cooperative transmission and RIS deployment can significantly improve the CE and demonstrate the importance of optimizing the downlink phase shifts with an explicit form.
Abstract:In continual learning, networks confront a trade-off between stability and plasticity when trained on a sequence of tasks. To bolster plasticity without sacrificing stability, we propose a novel training algorithm called LRFR. This approach optimizes network parameters in the null space of the past tasks' feature representation matrix to guarantee the stability. Concurrently, we judiciously select only a subset of neurons in each layer of the network while training individual tasks to learn the past tasks' feature representation matrix in low-rank. This increases the null space dimension when designing network parameters for subsequent tasks, thereby enhancing the plasticity. Using CIFAR-100 and TinyImageNet as benchmark datasets for continual learning, the proposed approach consistently outperforms state-of-the-art methods.
Abstract:In this paper, simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) is investigated in the multi-user mobile edge computing (MEC) system to improve the computation rate. Compared with traditional RIS-aided MEC, STAR-RIS extends the service coverage from half-space to full-space and provides new flexibility for improving the computation rate for end users. However, the STAR-RIS-aided MEC system design is a challenging problem due to the non-smooth and non-convex binary amplitude coefficients with coupled phase shifters. To fill this gap, this paper formulates a computation rate maximization problem via the joint design of the STAR-RIS phase shifts, reflection and transmission amplitude coefficients, the receive beamforming vectors, and energy partition strategies for local computing and offloading. To tackle the discontinuity caused by binary variables, we propose an efficient smoothing-based method to decrease convergence error, in contrast to the conventional penalty-based method, which brings many undesired stationary points and local optima. Furthermore, a fast iterative algorithm is proposed to obtain a stationary point for the joint optimization problem, with each subproblem solved by a low-complexity algorithm, making the proposed design scalable to a massive number of users and STAR-RIS elements. Simulation results validate the strength of the proposed smoothing-based method and show that the proposed fast iterative algorithm achieves a higher computation rate than the conventional method while saving the computation time by at least an order of magnitude. Moreover, the resultant STAR-RIS-aided MEC system significantly improves the computation rate compared to other baseline schemes with conventional reflect-only/transmit-only RIS.
Abstract:In this paper, the novel simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS), which enables full-space coverage on users located on both sides of the surface, is investigated in the multi-user mobile edge computing (MEC) system. A computation rate maximization problem is formulated via the joint design of the STAR-RIS phase shifts, reflection and transmission amplitude coefficients, the receive beamforming vectors at the access point, and the users' energy partition strategies for local computing and offloading. Two operating protocols of STAR-RIS, namely energy splitting (ES) and mode switching (MS) are studied. Based on DC programming and semidefinite relaxation, an iterative algorithm is proposed for the ES protocol to solve the formulated non-convex problem. Furthermore, the proposed algorithm is extended to solve the non-convex, non-continuous MS problems with binary amplitude coefficients. Simulation results show that the resultant STAR-RIS-aided MEC system significantly improves the computation rate compared to the baseline scheme with conventional reflect-only/transmit-only RIS.