Abstract:Street Scene Semantic Understanding (denoted as TriSU) is a complex task for autonomous driving (AD). However, inference model trained from data in a particular geographical region faces poor generalization when applied in other regions due to inter-city data domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization by collaborative privacy-preserving training over distributed datasets from different cities. Unfortunately, it suffers from slow convergence because data from different cities are with disparate statistical properties. Going beyond existing HFL methods, we propose a Gaussian heterogeneous HFL algorithm (FedGau) to address inter-city data heterogeneity so that convergence can be accelerated. In the proposed FedGau algorithm, both single RGB image and RGB dataset are modelled as Gaussian distributions for aggregation weight design. This approach not only differentiates each RGB image by respective statistical distribution, but also exploits the statistics of dataset from each city in addition to the conventionally considered data volume. With the proposed approach, the convergence is accelerated by 35.5\%-40.6\% compared to existing state-of-the-art (SOTA) HFL methods. On the other hand, to reduce the involved communication resource, we further introduce a novel performance-aware adaptive resource scheduling (AdapRS) policy. Unlike the traditional static resource scheduling policy that exchanges a fixed number of models between two adjacent aggregations, AdapRS adjusts the number of model aggregation at different levels of HFL so that unnecessary communications are minimized. Extensive experiments demonstrate that AdapRS saves 29.65\% communication overhead compared to conventional static resource scheduling policy while maintaining almost the same performance.
Abstract:To efficiently express tensor data using the Tucker format, a critical task is to minimize the multilinear rank such that the model would not be over-flexible and lead to overfitting. Due to the lack of rank minimization tools in tensor, existing works connect Tucker multilinear rank minimization to trace norm minimization of matrices unfolded from the tensor data. While these formulations try to exploit the common aim of identifying the low-dimensional structure of the tensor and matrix, this paper reveals that existing trace norm-based formulations in Tucker completion are inefficient in multilinear rank minimization. We further propose a new interpretation of Tucker format such that trace norm minimization is applied to the factor matrices of the equivalent representation, rather than some matrices unfolded from tensor data. Based on the newly established problem formulation, a fixed point iteration algorithm is proposed, and its convergence is proved. Numerical results are presented to show that the proposed algorithm exhibits significant improved performance in terms of multilinear rank learning and consequently tensor signal recovery accuracy, compared to existing trace norm based Tucker completion methods.
Abstract:The movable antenna (MA) is a promising technology to exploit more spatial degrees of freedom for enhancing wireless system performance. However, the MA-aided system introduces the non-convex antenna distance constraints, which poses challenges in the underlying optimization problems. To fill this gap, this paper proposes a general framework for optimizing the MA-aided system under the antenna distance constraints. Specifically, we separate the non-convex antenna distance constraints from the objective function by introducing auxiliary variables. Then, the resulting problem can be efficiently solved under the alternating optimization framework. For the subproblems with respect to the antenna position variables and auxiliary variables, the proposed algorithms are able to obtain at least stationary points without any approximations. To verify the effectiveness of the proposed optimization framework, we present two case studies: capacity maximization and regularized zero-forcing precoding. Simulation results demonstrate the proposed optimization framework outperforms the existing baseline schemes under both cases.
Abstract:Street Scene Semantic Understanding (denoted as TriSU) is a crucial but complex task for world-wide distributed autonomous driving (AD) vehicles (e.g., Tesla). Its inference model faces poor generalization issue due to inter-city domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization, but suffers from slow convergence rate because of vehicles' surrounding heterogeneity across cities. Going beyond existing HFL works that have deficient capabilities in complex tasks, we propose a rapid-converged heterogeneous HFL framework (FedRC) to address the inter-city data heterogeneity and accelerate HFL model convergence rate. In our proposed FedRC framework, both single RGB image and RGB dataset are modelled as Gaussian distributions in HFL aggregation weight design. This approach not only differentiates each RGB sample instead of typically equalizing them, but also considers both data volume and statistical properties rather than simply taking data quantity into consideration. Extensive experiments on the TriSU task using across-city datasets demonstrate that FedRC converges faster than the state-of-the-art benchmark by 38.7%, 37.5%, 35.5%, and 40.6% in terms of mIoU, mPrecision, mRecall, and mF1, respectively. Furthermore, qualitative evaluations in the CARLA simulation environment confirm that the proposed FedRC framework delivers top-tier performance.
Abstract:We investigate the learning of implicit neural representation (INR) using an overparameterized multilayer perceptron (MLP) via a novel nonparametric teaching perspective. The latter offers an efficient example selection framework for teaching nonparametrically defined (viz. non-closed-form) target functions, such as image functions defined by 2D grids of pixels. To address the costly training of INRs, we propose a paradigm called Implicit Neural Teaching (INT) that treats INR learning as a nonparametric teaching problem, where the given signal being fitted serves as the target function. The teacher then selects signal fragments for iterative training of the MLP to achieve fast convergence. By establishing a connection between MLP evolution through parameter-based gradient descent and that of function evolution through functional gradient descent in nonparametric teaching, we show for the first time that teaching an overparameterized MLP is consistent with teaching a nonparametric learner. This new discovery readily permits a convenient drop-in of nonparametric teaching algorithms to broadly enhance INR training efficiency, demonstrating 30%+ training time savings across various input modalities.
Abstract:Deep learning-based Autonomous Driving (AD) models often exhibit poor generalization due to data heterogeneity in an ever domain-shifting environment. While Federated Learning (FL) could improve the generalization of an AD model (known as FedAD system), conventional models often struggle with under-fitting as the amount of accumulated training data progressively increases. To address this issue, instead of conventional small models, employing Large Vision Models (LVMs) in FedAD is a viable option for better learning of representations from a vast volume of data. However, implementing LVMs in FedAD introduces three challenges: (I) the extremely high communication overheads associated with transmitting LVMs between participating vehicles and a central server; (II) lack of computing resource to deploy LVMs on each vehicle; (III) the performance drop due to LVM focusing on shared features but overlooking local vehicle characteristics. To overcome these challenges, we propose pFedLVM, a LVM-Driven, Latent Feature-Based Personalized Federated Learning framework. In this approach, the LVM is deployed only on central server, which effectively alleviates the computational burden on individual vehicles. Furthermore, the exchange between central server and vehicles are the learned features rather than the LVM parameters, which significantly reduces communication overhead. In addition, we utilize both shared features from all participating vehicles and individual characteristics from each vehicle to establish a personalized learning mechanism. This enables each vehicle's model to learn features from others while preserving its personalized characteristics, thereby outperforming globally shared models trained in general FL. Extensive experiments demonstrate that pFedLVM outperforms the existing state-of-the-art approaches.
Abstract:In mobile edge computing (MEC) systems, the wireless channel condition is a critical factor affecting both the communication power consumption and computation rate of the offloading tasks. This paper exploits the idea of cooperative transmission and employing reconfigurable intelligent surface (RIS) in MEC to improve the channel condition and maximize computation efficiency (CE). The resulting problem couples various wireless resources in both uplink and downlink, which calls for the joint design of the user association, receive/downlink beamforming vectors, transmit power of users, task partition strategies for local computing and offloading, and uplink/downlink phase shifts at the RIS. To tackle the challenges brought by the combinatorial optimization problem, the group sparsity structure of the beamforming vectors determined by user association is exploited. Furthermore, while the CE does not explicitly depend on the downlink phase shifts, instead of simply finding a feasible solution, we exploit the hidden relationship between them and convert this relationship into an explicit form for optimization. Then the resulting problem is solved via the alternating maximization framework, and the nonconvexity of each subproblem is handled individually. Simulation results show that cooperative transmission and RIS deployment can significantly improve the CE and demonstrate the importance of optimizing the downlink phase shifts with an explicit form.
Abstract:Activity detection is an important task in the next generation grant-free multiple access. While there are a number of existing algorithms designed for this purpose, they mostly require precise information about the network, such as large-scale fading coefficients, small-scale fading channel statistics, noise variance at the access points, and user activity probability. Acquiring these information would take a significant overhead and their estimated values might not be accurate. This problem is even more severe in cell-free networks as there are many of these parameters to be acquired. Therefore, this paper sets out to investigate the activity detection problem without the above-mentioned information. In order to handle so many unknown parameters, this paper employs the Bayesian approach, where the unknown variables are endowed with prior distributions which effectively act as regularizations. Together with the likelihood function, a maximum a posteriori (MAP) estimator and a variational inference algorithm are derived. Extensive simulations demonstrate that the proposed methods, even without the knowledge of these system parameters, perform better than existing state-of-the-art methods, such as covariance-based and approximate message passing methods.
Abstract:In continual learning, networks confront a trade-off between stability and plasticity when trained on a sequence of tasks. To bolster plasticity without sacrificing stability, we propose a novel training algorithm called LRFR. This approach optimizes network parameters in the null space of the past tasks' feature representation matrix to guarantee the stability. Concurrently, we judiciously select only a subset of neurons in each layer of the network while training individual tasks to learn the past tasks' feature representation matrix in low-rank. This increases the null space dimension when designing network parameters for subsequent tasks, thereby enhancing the plasticity. Using CIFAR-100 and TinyImageNet as benchmark datasets for continual learning, the proposed approach consistently outperforms state-of-the-art methods.
Abstract:While federated learning (FL) improves the generalization of end-to-end autonomous driving by model aggregation, the conventional single-hop FL (SFL) suffers from slow convergence rate due to long-range communications among vehicles and cloud server. Hierarchical federated learning (HFL) overcomes such drawbacks via introduction of mid-point edge servers. However, the orchestration between constrained communication resources and HFL performance becomes an urgent problem. This paper proposes an optimization-based Communication Resource Constrained Hierarchical Federated Learning (CRCHFL) framework to minimize the generalization error of the autonomous driving model using hybrid data and model aggregation. The effectiveness of the proposed CRCHFL is evaluated in the Car Learning to Act (CARLA) simulation platform. Results show that the proposed CRCHFL both accelerates the convergence rate and enhances the generalization of federated learning autonomous driving model. Moreover, under the same communication resource budget, it outperforms the HFL by 10.33% and the SFL by 12.44%.