Robert
Abstract:While the transformer has emerged as the eminent neural architecture, several independent lines of research have emerged to address its limitations. Recurrent neural approaches have also observed a lot of renewed interest, including the extended long short-term memory (xLSTM) architecture, which reinvigorates the original LSTM architecture. However, while xLSTMs have shown competitive performance compared to the transformer, their viability for learning self-supervised general-purpose audio representations has not yet been evaluated. This work proposes Audio xLSTM (AxLSTM), an approach to learn audio representations from masked spectrogram patches in a self-supervised setting. Pretrained on the AudioSet dataset, the proposed AxLSTM models outperform comparable self-supervised audio spectrogram transformer (SSAST) baselines by up to 20% in relative performance across a set of ten diverse downstream tasks while having up to 45% fewer parameters.
Abstract:The Gaussian process state-space model (GPSSM) has attracted extensive attention for modeling complex nonlinear dynamical systems. However, the existing GPSSM employs separate Gaussian processes (GPs) for each latent state dimension, leading to escalating computational complexity and parameter proliferation, thus posing challenges for modeling dynamical systems with high-dimensional latent states. To surmount this obstacle, we propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM, which involves pushing a shared GP through multiple normalizing flows to efficiently model the transition function in high-dimensional latent state space. Additionally, we develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity. Experimental results on diverse synthetic and real-world datasets corroborate the efficiency of the proposed method, while also demonstrating its ability to achieve similar inference performance compared to existing methods. Code is available at \url{https://github.com/zhidilin/gpssmProj}.
Abstract:Several recent works have adapted Masked Autoencoders (MAEs) for learning general-purpose audio representations. However, they do not address two key aspects of modelling multi-domain audio data: (i) real-world audio tasks consist of a combination of local+global contexts, and (ii) real-world audio signals are complex compositions of several acoustic elements with different time-frequency characteristics. To address these concerns, this work proposes a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention module that can capture information at multiple local and global contexts in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, as well as demonstrate considerably better scaling characteristics. Exploratory analyses of the learned representations reveals that MW-MAE encoders learn attention heads with more distinct entropies compared to those learned by MAEs, while attention heads across the different transformer blocks in MW-MAE decoders learn correlated feature representations, enabling each block to independently capture local and global information, leading to a decoupled feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained weights can be found at https://github.com/10997NeurIPS23/10997_mwmae.
Abstract:Sparse modeling for signal processing and machine learning has been at the focus of scientific research for over two decades. Among others, supervised sparsity-aware learning comprises two major paths paved by: a) discriminative methods and b) generative methods. The latter, more widely known as Bayesian methods, enable uncertainty evaluation w.r.t. the performed predictions. Furthermore, they can better exploit related prior information and naturally introduce robustness into the model, due to their unique capacity to marginalize out uncertainties related to the parameter estimates. Moreover, hyper-parameters associated with the adopted priors can be learnt via the training data. To implement sparsity-aware learning, the crucial point lies in the choice of the function regularizer for discriminative methods and the choice of the prior distribution for Bayesian learning. Over the last decade or so, due to the intense research on deep learning, emphasis has been put on discriminative techniques. However, a come back of Bayesian methods is taking place that sheds new light on the design of deep neural networks, which also establish firm links with Bayesian models and inspire new paths for unsupervised learning, such as Bayesian tensor decomposition. The goal of this article is two-fold. First, to review, in a unified way, some recent advances in incorporating sparsity-promoting priors into three highly popular data modeling tools, namely deep neural networks, Gaussian processes, and tensor decomposition. Second, to review their associated inference techniques from different aspects, including: evidence maximization via optimization and variational inference methods. Challenges such as small data dilemma, automatic model structure search, and natural prediction uncertainty evaluation are also discussed. Typical signal processing and machine learning tasks are demonstrated.
Abstract:This work explores the potency of stochastic competition-based activations, namely Stochastic Local Winner-Takes-All (LWTA), against powerful (gradient-based) white-box and black-box adversarial attacks; we especially focus on Adversarial Training settings. In our work, we replace the conventional ReLU-based nonlinearities with blocks comprising locally and stochastically competing linear units. The output of each network layer now yields a sparse output, depending on the outcome of winner sampling in each block. We rely on the Variational Bayesian framework for training and inference; we incorporate conventional PGD-based adversarial training arguments to increase the overall adversarial robustness. As we experimentally show, the arising networks yield state-of-the-art robustness against powerful adversarial attacks while retaining very high classification rate in the benign case.
Abstract:Speech is the most common way humans express their feelings, and sentiment analysis is the use of tools such as natural language processing and computational algorithms to identify the polarity of these feelings. Even though this field has seen tremendous advancements in the last two decades, the task of effectively detecting under represented sentiments in different kinds of datasets is still a challenging task. In this paper, we use single and bi-modal analysis of short dialog utterances and gain insights on the main factors that aid in sentiment detection, particularly in the underrepresented classes, in datasets with and without inherent sentiment component. Furthermore, we propose an architecture which uses a learning rate scheduler and different monitoring criteria and provides state-of-the-art results for the SWITCHBOARD imbalanced sentiment dataset.
Abstract:This work addresses adversarial robustness in deep learning by considering deep networks with stochastic local winner-takes-all (LWTA) nonlinearities. This type of network units result in sparse representations from each model layer, as the units are organized in blocks where only one unit generates non-zero output. The main operating principle of the introduced units lies on stochastic arguments, as the network performs posterior sampling over competing units to select the winner. We combine these LWTA arguments with tools from the field of Bayesian non-parametrics, specifically the stick-breaking construction of the Indian Buffet Process, to allow for inferring the sub-part of each layer that is essential for modeling the data at hand. Inference for the proposed network is performed by means of stochastic variational Bayes. We perform a thorough experimental evaluation of our model using benchmark datasets, assuming gradient-based adversarial attacks. As we show, our method achieves high robustness to adversarial perturbations, with state-of-the-art performance in powerful white-box attacks.
Abstract:Tensor rank learning for canonical polyadic decomposition (CPD) has long been deemed as an essential but challenging problem. In particular, since the tensor rank controls the complexity of the CPD model, its inaccurate learning would cause overfitting to noise or underfitting to the signal sources, and even destroy the interpretability of model parameters. However, the optimal determination of a tensor rank is known to be a non-deterministic polynomial-time hard (NP-hard) task. Rather than exhaustively searching for the best tensor rank via trial-and-error experiments, Bayesian inference under the Gaussian-gamma prior was introduced in the context of probabilistic CPD modeling and it was shown to be an effective strategy for automatic tensor rank determination. This triggered flourishing research on other structured tensor CPDs with automatic tensor rank learning. As the other side of the coin, these research works also reveal that the Gaussian-gamma model does not perform well for high-rank tensors or/and low signal-to-noise ratios (SNRs). To overcome these drawbacks, in this paper, we introduce a more advanced generalized hyperbolic (GH) prior to the probabilistic CPD model, which not only includes the Gaussian-gamma model as a special case, but also provides more flexibilities to adapt to different levels of sparsity. Based on this novel probabilistic model, an algorithm is developed under the framework of variational inference, where each update is obtained in a closed-form. Extensive numerical results, using synthetic data and real-world datasets, demonstrate the excellent performance of the proposed method in learning both low as well as high tensor ranks even for low SNR cases.
Abstract:Data fusion refers to the joint analysis of multiple datasets which provide complementary views of the same task. In this preprint, the problem of jointly analyzing electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) data is considered. Jointly analyzing EEG and fMRI measurements is highly beneficial for studying brain function because these modalities have complementary spatiotemporal resolution: EEG offers good temporal resolution while fMRI is better in its spatial resolution. The fusion methods reported so far ignore the underlying multi-way nature of the data in at least one of the modalities and/or rely on very strong assumptions about the relation of the two datasets. In this preprint, these two points are addressed by adopting for the first time tensor models in the two modalities while also exploring double coupled tensor decompositions and by following soft and flexible coupling approaches to implement the multi-modal analysis. To cope with the Event Related Potential (ERP) variability in EEG, the PARAFAC2 model is adopted. The results obtained are compared against those of parallel Independent Component Analysis (ICA) and hard coupling alternatives in both simulated and real data. Our results confirm the superiority of tensorial methods over methods based on ICA. In scenarios that do not meet the assumptions underlying hard coupling, the advantage of soft and flexible coupled decompositions is clearly demonstrated.
Abstract:In this paper, we propose a new localization framework in which mobile users or smart agents can cooperate to build accurate location services without sacrificing privacy, in particular, information related to their trajectories. The proposed framework is called Federated Localization (FedLoc), simply because it adopts the recently proposed federated learning. Apart from the new FedLoc framework, this paper can be deemed as an overview paper, in which we review the state-of-the-art federated learning framework, two widely used learning models, various distributed model hyper-parameter optimization schemes, and some practical use cases that fall under the FedLoc framework. The use cases, summarized from a mixture of standard, recently published, and unpublished works, cover a broad range of location services, including collaborative static localization/fingerprinting, indoor target tracking, outdoor navigation using low-sampling GPS, and spatio-temporal wireless traffic data modeling and prediction. The obtained primary results confirm that the proposed FedLoc framework well suits data-driven, machine learning-based localization and spatio-temporal data modeling. Future research directions are discussed at the end of this paper.