School of Software & Microelectronics, Peking University, Beijing, China
Abstract:Hand exoskeletons have significant potential in labor-intensive fields by mitigating hand grip fatigue, enhancing hand strength, and preventing injuries.However, most traditional hand exoskeletons are driven by motors whose output force is limited under constrained installation conditions. In addition, they also come with the disadvantages of high power consumption, complex and bulky assistive systems, and high instability.In this work, we develop a novel hand exoskeleton integrated with magnetorheological (MR) clutches that offers a high force-to-power ratio to improve grip endurance. The clutch features an enhanced structure design, a micro roller enhancing structure, which can significantly boost output forces. The experimental data demonstrate that the clutch can deliver a peak holding force of 380 N with a consumption of 1.48 W, yielding a force-to-power ratio of 256.75N/W, which is 2.35 times higher than the best reported actuator used for hand exoskeletons. The designed MR hand exoskeleton is highly integrated and comprises an exoskeleton frame, MR clutches, a control unit, and a battery. Evaluations through static grip endurance tests and dynamic carrying and lifting tests confirm that the MR hand exoskeleton can effectively reduce muscle fatigue, extend grip endurance, and minimize injuries. These findings highlight its strong potential for practical applications in repetitive tasks such as carrying and lifting in industrial settings.
Abstract:While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.
Abstract:Proactive dialogue systems aim to empower chatbots with the capability of leading conversations towards specific targets, thereby enhancing user engagement and service autonomy. Existing systems typically target pre-defined keywords or entities, neglecting user attributes and preferences implicit in dialogue history, hindering the development of long-term user intimacy. To address these challenges, we take a radical step towards building a more human-like conversational agent by integrating proactive dialogue systems with long-term memory into a unified framework. Specifically, we define a novel task named Memory-aware Proactive Dialogue (MapDia). By decomposing the task, we then propose an automatic data construction method and create the first Chinese Memory-aware Proactive Dataset (ChMapData). Furthermore, we introduce a joint framework based on Retrieval Augmented Generation (RAG), featuring three modules: Topic Summarization, Topic Retrieval, and Proactive Topic-shifting Detection and Generation, designed to steer dialogues towards relevant historical topics at the right time. The effectiveness of our dataset and models is validated through both automatic and human evaluations. We release the open-source framework and dataset at https://github.com/FrontierLabs/MapDia.
Abstract:Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .
Abstract:The multi-view Gaussian process latent variable model (MV-GPLVM) aims to learn a unified representation from multi-view data but is hindered by challenges such as limited kernel expressiveness and low computational efficiency. To overcome these issues, we first introduce a new duality between the spectral density and the kernel function. By modeling the spectral density with a bivariate Gaussian mixture, we then derive a generic and expressive kernel termed Next-Gen Spectral Mixture (NG-SM) for MV-GPLVMs. To address the inherent computational inefficiency of the NG-SM kernel, we propose a random Fourier feature approximation. Combined with a tailored reparameterization trick, this approximation enables scalable variational inference for both the model and the unified latent representations. Numerical evaluations across a diverse range of multi-view datasets demonstrate that our proposed method consistently outperforms state-of-the-art models in learning meaningful latent representations.
Abstract:Visual prompting has gained popularity as a method for adapting pre-trained models to specific tasks, particularly in the realm of parameter-efficient tuning. However, existing visual prompting techniques often pad the prompt parameters around the image, limiting the interaction between the visual prompts and the original image to a small set of patches while neglecting the inductive bias present in shared information across different patches. In this study, we conduct a thorough preliminary investigation to identify and address these limitations. We propose a novel visual prompt design, introducing Low-Rank matrix multiplication for Visual Prompting (LoR-VP), which enables shared and patch-specific information across rows and columns of image pixels. Extensive experiments across seven network architectures and four datasets demonstrate significant improvements in both performance and efficiency compared to state-of-the-art visual prompting methods, achieving up to 6 times faster training times, utilizing 18 times fewer visual prompt parameters, and delivering a 3.1% improvement in performance. The code is available as https://github.com/jincan333/LoR-VP.
Abstract:Anomaly detection is crucial for ensuring the stability and reliability of web service systems. Logs and metrics contain multiple information that can reflect the system's operational state and potential anomalies. Thus, existing anomaly detection methods use logs and metrics to detect web service systems' anomalies through data fusion approaches. They associate logs and metrics using coarse-grained time window alignment and capture the normal patterns of system operation through reconstruction. However, these methods have two issues that limit their performance in anomaly detection. First, due to asynchrony between logs and metrics, coarse-grained time window alignment cannot achieve a precise association between the two modalities. Second, reconstruction-based methods suffer from severe overgeneralization problems, resulting in anomalies being accurately reconstructed. In this paper, we propose a novel anomaly detection method named FFAD to address these two issues. On the one hand, FFAD employs graph-based alignment to mine and extract associations between the modalities from the constructed log-metric relation graph, achieving precise associations between logs and metrics. On the other hand, we improve the model's fit to normal data distributions through Fourier Frequency Focus, thereby enhancing the effectiveness of anomaly detection. We validated the effectiveness of our model on two real-world industrial datasets and one open-source dataset. The results show that our method achieves an average anomaly detection F1-score of 93.6%, representing an 8.8% improvement over previous state-of-the-art methods.
Abstract:Deep-learning-based face recognition (FR) systems are susceptible to adversarial examples in both digital and physical domains. Physical attacks present a greater threat to deployed systems as adversaries can easily access the input channel, allowing them to provide malicious inputs to impersonate a victim. This paper addresses the limitations of existing projector-camera-based adversarial light attacks in practical FR setups. By incorporating device-aware adaptations into the digital attack algorithm, such as resolution-aware and color-aware adjustments, we mitigate the degradation from digital to physical domains. Experimental validation showcases the efficacy of our proposed algorithm against real and spoof adversaries, achieving high physical similarity scores in FR models and state-of-the-art commercial systems. On average, there is only a 14% reduction in scores from digital to physical attacks, with high attack success rate in both white- and black-box scenarios.
Abstract:Miniature underwater robots play a crucial role in the exploration and development of marine resources, particularly in confined spaces and high-pressure deep-sea environments. This study presents the design, optimization, and performance of a miniature robotic fish, powered by the oscillation of bio-inspired fins. These fins feature a rigid-flexible hybrid structure and use an eccentric rotating mass (ERM) vibration motor as the excitation source to generate high-frequency unidirectional oscillations that induce acoustic streaming for propulsion. The drive mechanism, powered by miniature ERM vibration motors, eliminates the need for complex mechanical drive systems, enabling complete isolation of the entire drive system from the external environment and facilitating the miniaturization of the robotic fish. A compact, untethered robotic fish, measuring 85*60*45 mm^3, is equipped with three bio-inspired fins located at the pectoral and caudal positions. Experimental results demonstrate that the robotic fish achieves a maximum forward swimming speed of 1.36 body lengths (BL) per second powered by all fins and minimum turning radius of 0.6 BL when powered by a single fin. These results underscore the significance of employing the ERM vibration motor in advancing the development of highly maneuverable, miniature untethered underwater robots for various marine exploration tasks.
Abstract:Hyperspectral Image Fusion (HIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without valid supervision, failing to fully perceive the deep modality-complementary information and hence, resulting in a superficial understanding of inter-modality connections. To bridge this gap, we propose a simple and effective solution for unsupervised HIF with an assumption that modality decoupling is essential for HIF. We introduce the modality clustering loss that ensures clear guidance of the modality, decoupling towards modality-shared features while steering clear of modality-complementary ones. Also, we propose an end-to-end Modality-Decoupled Spatial-Spectral Fusion (MossFuse) framework that decouples shared and complementary information across modalities and aggregates a concise representation of the LR-HSI and HR-MSI to reduce the modality redundancy. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HIF methods while requiring considerably fewer parameters with reduced inference time.