Abstract:Vector quantization(VQ) is a hardware-friendly DNN compression method that can reduce the storage cost and weight-loading datawidth of hardware accelerators. However, conventional VQ techniques lead to significant accuracy loss because the important weights are not well preserved. To tackle this problem, a novel approach called MVQ is proposed, which aims at better approximating important weights with a limited number of codewords. At the algorithm level, our approach removes the less important weights through N:M pruning and then minimizes the vector clustering error between the remaining weights and codewords by the masked k-means algorithm. Only distances between the unpruned weights and the codewords are computed, which are then used to update the codewords. At the architecture level, our accelerator implements vector quantization on an EWS (Enhanced weight stationary) CNN accelerator and proposes a sparse systolic array design to maximize the benefits brought by masked vector quantization.\\ Our algorithm is validated on various models for image classification, object detection, and segmentation tasks. Experimental results demonstrate that MVQ not only outperforms conventional vector quantization methods at comparable compression ratios but also reduces FLOPs. Under ASIC evaluation, our MVQ accelerator boosts energy efficiency by 2.3$\times$ and reduces the size of the systolic array by 55\% when compared with the base EWS accelerator. Compared to the previous sparse accelerators, MVQ achieves 1.73$\times$ higher energy efficiency.
Abstract:The separation of the data capture and analysis in modern vision systems has led to a massive amount of data transfer between the end devices and cloud computers, resulting in long latency, slow response, and high power consumption. Efficient hardware architectures are under focused development to enable Artificial Intelligence (AI) at the resource-limited end sensing devices. This paper proposes a Processing-In-Pixel (PIP) CMOS sensor architecture, which allows convolution operation before the column readout circuit to significantly improve the image reading speed with much lower power consumption. The simulation results show that the proposed architecture enables convolution operation (kernel size=3*3, stride=2, input channel=3, output channel=64) in a 1080P image sensor array with only 22.62 mW power consumption. In other words, the computational efficiency is 4.75 TOPS/w, which is about 3.6 times as higher as the state-of-the-art.
Abstract:Recently, BERT has become an essential ingredient of various NLP deep models due to its effectiveness and universal-usability. However, the online deployment of BERT is often blocked by its large-scale parameters and high computational cost. There are plenty of studies showing that the knowledge distillation is efficient in transferring the knowledge from BERT into the model with a smaller size of parameters. Nevertheless, current BERT distillation approaches mainly focus on task-specified distillation, such methodologies lead to the loss of the general semantic knowledge of BERT for universal-usability. In this paper, we propose a sentence representation approximating oriented distillation framework that can distill the pre-trained BERT into a simple LSTM based model without specifying tasks. Consistent with BERT, our distilled model is able to perform transfer learning via fine-tuning to adapt to any sentence-level downstream task. Besides, our model can further cooperate with task-specific distillation procedures. The experimental results on multiple NLP tasks from the GLUE benchmark show that our approach outperforms other task-specific distillation methods or even much larger models, i.e., ELMO, with efficiency well-improved.
Abstract:Leveraging persona information of users in Neural Response Generators (NRG) to perform personalized conversations has been considered as an attractive and important topic in the research of conversational agents over the past few years. Despite of the promising progresses achieved by recent studies in this field, persona information tends to be incorporated into neural networks in the form of user embeddings, with the expectation that the persona can be involved via the End-to-End learning. This paper proposes to adopt the personality-related characteristics of human conversations into variational response generators, by designing a specific conditional variational autoencoder based deep model with two new regularization terms employed to the loss function, so as to guide the optimization towards the direction of generating both persona-aware and relevant responses. Besides, to reasonably evaluate the performances of various persona modeling approaches, this paper further presents three direct persona-oriented metrics from different perspectives. The experimental results have shown that our proposed methodology can notably improve the performance of persona-aware response generation, and the metrics are reasonable to evaluate the results.
Abstract:Chinese meme-face is a special kind of internet subculture widely spread in Chinese Social Community Networks. It usually consists of a template image modified by some amusing details and a text caption. In this paper, we present MemeFaceGenerator, a Generative Adversarial Network with the attention module and template information as supplementary signals, to automatically generate meme-faces from text inputs. We also develop a web service as system demonstration of meme-face synthesis. MemeFaceGenerator has been shown to be capable of generating high-quality meme-faces from random text inputs.