Abstract:Referring 3D Segmentation is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query. Previous works perform a two-stage paradigm, first conducting language-agnostic instance segmentation then matching with given text query. However, the semantic concepts from text query and visual cues are separately interacted during the training, and both instance and semantic labels for each object are required, which is time consuming and human-labor intensive. To mitigate these issues, we propose a novel Referring 3D Segmentation pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask. Specifically, we design a Point-Word Cross-Modal Alignment module for aligning the fine-grained features of points and textual embedding. Query Mask Predictor module and Query-Sentence Alignment module are introduced for coarse-grained alignment between masks and query. Furthermore, we propose an area regularization loss, which coarsely reduces irrelevant background predictions on a large scale. Besides, a point-to-point contrastive loss is proposed concentrating on distinguishing points with subtly similar features. Through extensive experiments, we achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels.
Abstract:Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
Abstract:In this paper, we introduce MRStyle, a comprehensive framework that enables color style transfer using multi-modality reference, including image and text. To achieve a unified style feature space for both modalities, we first develop a neural network called IRStyle, which generates stylized 3D lookup tables for image reference. This is accomplished by integrating an interaction dual-mapping network with a combined supervised learning pipeline, resulting in three key benefits: elimination of visual artifacts, efficient handling of high-resolution images with low memory usage, and maintenance of style consistency even in situations with significant color style variations. For text reference, we align the text feature of stable diffusion priors with the style feature of our IRStyle to perform text-guided color style transfer (TRStyle). Our TRStyle method is highly efficient in both training and inference, producing notable open-set text-guided transfer results. Extensive experiments in both image and text settings demonstrate that our proposed method outperforms the state-of-the-art in both qualitative and quantitative evaluations.
Abstract:Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.
Abstract:We study the task of language instruction-guided robotic manipulation, in which an embodied robot is supposed to manipulate the target objects based on the language instructions. In previous studies, the predicted manipulation regions of the target object typically do not change with specification from the language instructions, which means that the language perception and manipulation prediction are separate. However, in human behavioral patterns, the manipulation regions of the same object will change for different language instructions. In this paper, we propose Instruction-Guided Affordance Net (IGANet) for predicting affordance maps of instruction-guided robotic manipulation tasks by utilizing powerful priors from vision and language encoders pre-trained on large-scale datasets. We develop a Vison-Language-Models(VLMs)-based data augmentation pipeline, which can generate a large amount of data automatically for model training. Besides, with the help of Large-Language-Models(LLMs), actions can be effectively executed to finish the tasks defined by instructions. A series of real-world experiments revealed that our method can achieve better performance with generated data. Moreover, our model can generalize better to scenarios with unseen objects and language instructions.
Abstract:In this paper, we propose 3DSS-VLG, a weakly supervised approach for 3D Semantic Segmentation with 2D Vision-Language Guidance, an alternative approach that a 3D model predicts dense-embedding for each point which is co-embedded with both the aligned image and text spaces from the 2D vision-language model. Specifically, our method exploits the superior generalization ability of the 2D vision-language models and proposes the Embeddings Soft-Guidance Stage to utilize it to implicitly align 3D embeddings and text embeddings. Moreover, we introduce the Embeddings Specialization Stage to purify the feature representation with the help of a given scene-level label, specifying a better feature supervised by the corresponding text embedding. Thus, the 3D model is able to gain informative supervisions both from the image embedding and text embedding, leading to competitive segmentation performances. To the best of our knowledge, this is the first work to investigate 3D weakly supervised semantic segmentation by using the textual semantic information of text category labels. Moreover, with extensive quantitative and qualitative experiments, we present that our 3DSS-VLG is able not only to achieve the state-of-the-art performance on both S3DIS and ScanNet datasets, but also to maintain strong generalization capability.
Abstract:Efficient finetuning of vision-language models (VLMs) like CLIP for specific downstream tasks is gaining significant attention. Previous works primarily focus on prompt learning to adapt the CLIP into a variety of downstream tasks, however, suffering from task overfitting when finetuned on a small data set. In this paper, we introduce an orthogonal finetuning method for efficiently updating pretrained weights which enhances robustness and generalization, while a cross-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed \textbf{\textit{OrthCR}}. Specifically, trainable orthogonal matrices are injected seamlessly into the transformer architecture and enforced with orthogonality constraint using Cayley parameterization, benefiting from the norm-preserving property and thus leading to stable and faster convergence. To alleviate deviation from orthogonal constraint during training, a cross-regularization strategy is further employed with initial pretrained weights within a bypass manner. In addition, to enrich the sample diversity for downstream tasks, we first explore Cutout data augmentation to boost the efficient finetuning and comprehend how our approach improves the specific downstream performance and maintains the generalizability in the perspective of Orthogonality Learning. Beyond existing prompt learning techniques, we conduct extensive experiments to demonstrate that our method explicitly steers pretrained weight space to represent the task-specific knowledge and presents competitive generalizability under \textit{base-to-base/base-to-new}, \textit{cross-dataset transfer} and \textit{domain generalization} evaluations.
Abstract:Open-vocabulary detection is a challenging task due to the requirement of detecting objects based on class names, including those not encountered during training. Existing methods have shown strong zero-shot detection capabilities through pre-training on diverse large-scale datasets. However, these approaches still face two primary challenges: (i) how to universally integrate diverse data sources for end-to-end training, and (ii) how to effectively leverage the language-aware capability for region-level cross-modality understanding. To address these challenges, we propose a novel unified open-vocabulary detection method called OV-DINO, which pre-trains on diverse large-scale datasets with language-aware selective fusion in a unified framework. Specifically, we introduce a Unified Data Integration (UniDI) pipeline to enable end-to-end training and eliminate noise from pseudo-label generation by unifying different data sources into detection-centric data. In addition, we propose a Language-Aware Selective Fusion (LASF) module to enable the language-aware ability of the model through a language-aware query selection and fusion process. We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmark datasets, achieving state-of-the-art results with an AP of 50.6\% on the COCO dataset and 40.0\% on the LVIS dataset in a zero-shot manner, demonstrating its strong generalization ability. Furthermore, the fine-tuned OV-DINO on COCO achieves 58.4\% AP, outperforming many existing methods with the same backbone. The code for OV-DINO will be available at \href{https://github.com/wanghao9610/OV-DINO}{https://github.com/wanghao9610/OV-DINO}.
Abstract:Foundation models hold significant potential for enabling robots to perform long-horizon general manipulation tasks. However, the simplicity of tasks and the uniformity of environments in existing benchmarks restrict their effective deployment in complex scenarios. To address this limitation, this paper introduces the \textit{RoboCAS} benchmark, the first benchmark specifically designed for complex object arrangement scenarios in robotic manipulation. This benchmark employs flexible and concise scripted policies to efficiently collect a diverse array of demonstrations, showcasing scattered, orderly, and stacked object arrangements within a highly realistic physical simulation environment. It includes complex processes such as target retrieval, obstacle clearance, and robot manipulation, testing agents' abilities to perform long-horizon planning for spatial reasoning and predicting chain reactions under ambiguous instructions. Extensive experiments on multiple baseline models reveal their limitations in managing complex object arrangement scenarios, underscoring the urgent need for intelligent agents capable of performing long-horizon operations in practical deployments and providing valuable insights for future research directions. Project website: \url{https://github.com/notFoundThisPerson/RoboCAS-v0}.
Abstract:A 16-dimensional Voronoi constellation concatenated with multilevel coding is experimentally demonstrated over a 50km four-core fiber transmission system. The proposed scheme reduces the required launch power by 6dB and provides a 17dB larger operating range than 16QAM with BICM at the outer HD-FEC BER threshold.